Thermodiffusion in weightlessness

October 27, 2014, Springer
Thermodiffusion in weightlessness
Flow pattern 2 min after the start of vibrations. Credit: © Y. Gaponenko et al.

Thermodiffusion, also called the Soret effect, is a mechanism by which an imposed temperature difference establishes a concentration difference within a mixture. Two studies by Belgian scientists from the Free University of Brussels, recently published in European Physical Journal E, provide a better understanding of such effects. They build on recent experimental results from the IVIDIL (Influence Vibration on Diffusion in Liquids) research project performed on the International Space Station under microgravity to avoid motion in the liquids.

In the first study1, using a mathematical model, the authors set out to identify how vibrations applied to a binary liquid mixture change the temperature and concentration fields over a long time scale. Their findings pave the way for studying multi-component mixtures in orbit. By extending the findings to ternary mixtures, this study also has implications for the generation of models used to evaluate the economic value of oil reservoirs for the oil and gas industry, for example.

However, there is still a lack of data for systems with a negative Soret effect, when thermodiffusion makes the denser component migrate to the hotter region. The authors of the second paper2 use numerical models to study the establishment of the concentration field near the critical region, where diffusion strongly diminishes. Surprisingly, they demonstrate that the component separation through the Soret effect is saturated and not infinite, and is reached surprisingly rapidly. At the same time, the authors are developing an instrument using what is known as the Taylor dispersion technique – which is not sensitive to gravity – to measure the thermodiffusion near the critical point in a laboratory.

The second study could therefore contribute to developing technologies to prevent increases in the CO2 concentration in the atmosphere associated with global warming. Indeed, the process of capturing CO2 near large power plants burning fossil fuels involves its subsequent reinjection in disused underground oil or gas reservoirs. The key is that CO2 containing aggressive impurities, such as sulfur dioxide and hydrogen sulphide, are injected in a supercritical state into the geothermal field. The findings of the second study may help to determine whether the Soret effect could lead to a very large accumulation of concentrated aggressive components, capable of creating a leak in the initially impervious cap-rock of the reservoir.

Explore further: Gasification of oil palm biomass to produce clean producer gas for heat, power generation

More information: — Gaponenko, Y., Mialdun, A. and Shevtsova, V. (2014). Experimental and numerical analysis of mass transfer in a binary mixture with Soret effect in the presence of weak convection. European Physical Journal E. DOI: 10.1140/epje/i2014-14090-5

— Legros, J.C. et al. (2014). Soret separation in a binary liquid mixture near its critical temperature. European Physical Journal E . DOI: 10.1140/epje/i2014-14089-x

Related Stories

Use of microfluidic chips a first in bitumen-gas analysis

February 29, 2012

A University of Toronto research team has developed a process to analyze the behavior of bitumen in reservoirs using a microfluidic chip, a tool commonly associated with the field of medical diagnostics. The process may reduce ...

Optimize carbon dioxide sequestration, enhance oil recovery

January 9, 2014

( —Los Alamos researchers and collaborators from the University of Utah have created a generic integrated framework simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based ...

Rounding up the BCATs on the Space Station

May 13, 2014

Although it may not be herding cats exactly, all the NASA-supported Binary Colloidal Alloy Tests (BCAT) studies have ended on the International Space Station, and the experimental samples are being rounded up and returned ...

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Oct 27, 2014
perfectly good research being tainted by global warming buzzword nonsense to get funding.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.