Line camera makes magnetic field lines visible in 3D and real time

October 27, 2014, Fraunhofer-Gesellschaft
The line camera visualizes magnetic field values in real time. Credit: Max Etzold

Fraunhofer scientists have developed a high-resolution magnetic line camera to measure magnetic fields in real time. Field lines in magnetic systems such as generators or motors, which are invisible to the human eye, can be made visible using this camera. It is especially suitable for industrial applications, for example in quality assurance during the manufacture of magnets. A prototype will be on display for the first time at electronica 2014 in Munich from November 11-14 (Hall A4 / Booth 113).

We encounter everywhere today – but few of us know it. These sensors make sure washing machines run concentrically, that headlights automatically adjust to the correct angle if a car is heavily loaded, or that we are warned if a seatbelt is not fastened right. If a mechanical movement is transformed into a rotation, the magnetic sensor detects this and passes the information to systems downstream – to the headlight sensors, for instance.

It is therefore important that magnets operate reliably. Quality assurance during fabrication has been expensive and time-consuming until now. Researchers at the Fraunhofer Institute for Integrated Circuits IIS in Erlangen, Germany, have developed a line that can measure magnetic fields in and thus quickly detect defective magnets. It has become possible for the first time to integrate this kind of magnetic testing into industrial processes. The magnets are simply tested on the conveyor belt.

1000 images per second

"Imagine the device not as a camera, but more as a flat plate with a row of ," explains Project Manager Klaus-Dieter Taschka from IIS. The heart of the device is a 3D Hall-effect sensor named HallinOne® invented at his Institute: "It enables a sensor chip to detect in all three axes any magnetic field present. These kinds of sensors can solve a range of measurement problems, such as rotation angle sensors, separation and positional sensors, and rpm sensors for instance."

Using the magnetic line camera, it is possible to measure the strength and direction of the magnetic field at 32 positions spaced 2.5 mm apart. The field lines thus become visible along the line over a distance of eight centimeters and can be monitored and recorded. The actual 3D sensor measures no more than 0.1 x 0.1 mm2 in size. This permits point measurements and thus very high measurement accuracy.
The measuring procedure itself takes place in just a millisecond, so the camera provides 1000 images per second. This speed allows the magnetic camera to be built into production facilities and test magnets on a running conveyor belt. The real-time aspect is also important, as the shape of the magnet as well as the magnetisation direction influences the measurement values and must be taken into account during calibration of the system. At the conclusion of the measurement process, the system assigns the various magnetic shapes to the measurement results and calculates in the error tolerances. For simple applications, the camera can be connected through a USB interface to a PC.

The next step is already planned: Fraunhofer scientists are currently working on a two-dimensional camera that can take magnetic color pictures of a 40 x 40 mm2 surface – and at a speed of over 100 images per second.

Explore further: Can magnetic fields accurately measure positions of ferromagnetic objects?

Related Stories

3-D Magnetic field measurement

June 11, 2013

Magnetic field sensors are a contact- and wear-free means of measuring the position of machine parts and products. A new generation of Hall sensors is now making the process even more precise and free of interference.

Magnetic Sensor That Brooks No Interference

June 3, 2008

Sensors accurately register the slightest temperature fluctuations, the tiniest changes to a magnetic field, or barely perceptible air currents. In some cases, however, there are limits to their accuracy – for instance ...

Getting the right spin

May 14, 2014

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. Fraunhofer researchers have developed ...

Researchers build first 3D magnetic logic gate

August 8, 2014

(Phys.org) —The integrated circuits in virtually every computer today are built exclusively from transistors. But as researchers are constantly trying to improve the density of circuits on a chip, they are looking at alternative ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.