3-D printing incorporates quasicrystals for stronger manufacturing products

October 31, 2014 by Mikiko Tanifuji, National Institute for Materials Science
Picture of a porous preform made by selective laser sintering containing Al–Cu–Fe–B quasicrystal particles and a polymer binder. The lateral dimension of the preform is 5 cm. Sci. Technol. Adv. Mater. Vol. 15 (2014) p. 024802 (Fig. 2). Credit: The University of Lorraine

Researchers at the University of Lorraine in France say that quasicrystals, a type of complex metal alloy with crystal-like properties, can be useful in the design of new composite materials.

Automotive, aerospace and machinery industries, among others, are resorting more and more to the use of 3D printing methods to produce components. There is a strong demand that the technologies involved in this process produce parts with stronger functional properties. This requires the development of new adaptable .

Researchers at the University of Lorraine in France say that quasicrystals, a type of complex metal alloy with crystal-like properties, can be useful in the design of new composite materials for this purpose.

In a review published by Science and Technology of Advanced Materials, Samuel Kenzari and co-authors summarized recent developments related to the use of complex metal alloys in .

Additive manufacturing, commonly thought of as 3D printing, is a process that involves the manufacture of components from a digital model. Traditional manufacturing methods often start with an object and remove material from it in order to obtain the final component. In additive manufacturing, lasers are employed to build layers based on a , ultimately resulting in the final component.

Additive manufacturing methods are becoming widespread and affect many industries. In 2012, they generated global revenues of US$ 2.2 billion. But the range of materials used is still restricted despite a real demand for manufacturing lighter parts with better functional properties.

Incorporating complex metal alloys (CMAs), such as quasicrystals, in the design of new can help meet this demand.

Complex are promising because of their potentially useful properties such as low friction, relatively good corrosion resistance, and good resistance to wear. They are also, however, intrinsically brittle, preventing their use as bulk materials. Scientists, reports the University of Lorraine team of researchers, have found alternatives to circumvent this problem. One is to use CMAs as reinforcement particles. The other is to use them as a coating material.

CMAs have been used together with metals to develop lightweight composites that can be used in building 3D parts. These parts have mechanical properties similar to those of steel-brass composites currently used in the industry but with the advantage of having a lower density.

"Automotive and aeronautics industries are happy to have functional parts with a lower density," explains one of co-authors, Prof. Fournee Vincent. "Reducing the weight of vehicles reduces fuel consumption." A practical example is shown in figure.

Quasicrystals have also been used to reinforce polymer matrix composites used in 3D printing technologies. These new composites present several advantages compared to other materials with regards to friction, wear, and sealing.

Functional parts using both kinds of alloys are already being commercialized. Pipes and intake manifolds used in fluidic applications surrounding car engines are a good example.

The researchers are currently working on the development of functional parts made using CMAs that have health applications.

Explore further: "Unlikely couples" of materials enable vehicle weight to be reduced

More information: "Complex metallic alloys as new materials for additive manufacturing" Samuel Kenzari, David Bonina, Jean Marie Dubois and Vincent Fournée: Sci. Technol. Adv. Mater. Vol. 15 (2014) p. 024802. DOI: 10.1088/1468-6996/15/2/024802

Related Stories

Printing the metals of the future

July 29, 2014

3-D printers can create all kinds of things, from eyeglasses to implantable medical devices, straight from a computer model and without the need for molds. But for making spacecraft, engineers sometimes need custom parts ...

Amazing future for 3D printing with ESA

October 17, 2013

3D printing is getting ready to revolutionise space travel. ESA is paving the way for 3D-printed metals to build high-quality, intricate shapes with massive cost savings.

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.