Biofuels from woody plants and grasses instead of the corn and sugarcane

October 28, 2014 by D'lyn Ford, North Carolina State University
The cover image for Plant Biotechnology Journal shows three woody stems of black cottonwood, a model energy tree NC State researchers have used to map pathway genes controlling lignin (background diagram). A systems biology approach will be needed for future breakthroughs. Credit: J. Wang

Scientists are using biotechnology to chip away at barriers to producing biofuels from woody plants and grasses instead of the corn and sugarcane used to make ethanol.

NC State's Forest Biotechnology Group, which has been responsible for several research milestones published this year, summed up research progress and challenges for a special issue of the Plant Biotechnology Journal.

The greatest barrier to producing more sustainable and economical biofuels, according to lead author Dr. Quanzi Li, comes from stubborn plant cell walls that resist being broken down into biofuel ingredients. Cell walls contain desirable cellulose and hemicellulose, which is "covered up" with lignin, the substance that contributes to the strength of wood but gets in the way of biofuel production.

To make biofuel from wood, manufacturers must remove lignin and convert the cellulose to ethanol. Production begins with an expensive pretreatment, followed by enzyme use to release the sugars that can be fermented to produce ethanol.

Li says biotechnology research focuses on simplifying the process on several fronts.

Scientists have found ways to modify the cell wall structure to reduce the amount of lignin and change its makeup. They've manipulated the steps in hemicellulose formation and disrupted links between lignin and celluloses. To speed up biofuel production, they've introduced cell wall-degrading enzymes into plants, such as a bacterial gene that won't affect plants until it's activated at high temperatures during biofuel production.

NC State's team has created genetically modified trees with reduced lignin content – no small feat.

"Normally when you reduce lignin, plant growth is negatively affected, which also reduces biomass production," Li says. "However, we now know that we can produce transgenic plants with strong cell walls and normal development but much less lignin."

Fast-growing trees with high energy content could grow on marginal land without disrupting crop production.

NC State has worked extensively with black cottonwood (Populus trichocarpa), a model tree species for . Forest Biotechnology Group researchers in the College of Natural Resources have developed engineering models that predict how 21 pathway enzymes affect lignin content and composition, providing the equivalent of GPS directions to guide future research.

This comprehensive approach, which involves genes, proteins, plant chemical compounds and mathematical models, fits into a systems biology perspective that's the key to future breakthroughs, Li says.

"Progress has been made in many areas, but we still lack a complete understanding of how the is formed. We have to have a better idea of the factors that control its formation to produce better biomass for biofuels."

Explore further: New, simple technique may drive down biofuel production costs

More information: Li, Q., Song, J., Peng, S., Wang, J.P., Qu, G.-Z., Sederoff, R.R. and Chiang, V.L. (2014) "Plant biotechnology for lignocellulosic biofuel production." Plant Biotechnol. J., DOI: 10.1111/pbi.12273

Related Stories

New, simple technique may drive down biofuel production costs

January 7, 2014

Researchers at North Carolina State University have developed a simple, effective and relatively inexpensive technique for removing lignin from the plant material used to make biofuels, which may drive down the cost of biofuel ...

Lignin breakthroughs serve as GPS for plant research

March 11, 2014

Researchers at North Carolina State University have developed the equivalent of GPS directions for future plant scientists to understand how plants adapt to the environment and to improve plants' productivity and biofuel ...

An enzyme to ease biofuel production

August 15, 2013

Limited availability of fossil fuels stimulates the search for different energy resources. The use of biofuels is one of the alternatives. Sugars derived from the grain of agricultural crops can be used to produce biofuel ...

Soil bacterium causes biofuel breakdown

January 13, 2014

(Phys.org) —Biofuels made from plant materials—also known as lignocellulosic biofuels—have promise as a source of sustainable alternative fuels thanks to soil bacterium known as Enterobacter lignolyticus SCF1. SCF1 ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.