Researchers develop new transparent nanoscintillators for radiation detection

September 29, 2014, University of Texas at Arlington
Dr. Wei Chen, of the University of Texas at Arlington, is lead author on a new Optics Letters paper that describes the development of a new radiation detection method. Credit: UT Arlington

A University of Texas at Arlington research team says recently identified radiation detection properties of a light-emitting nanostructure built in their lab could open doors for homeland security and medical advances.

In a paper to be published in the Oct. 1 issue of Optics Letters, UT Arlington Physics Professor Wei Chen and his co-authors describe a new method to fabricate transparent nanoscintillators by heating nanoparticles composed of lanthanum, yttrium and oxygen until a transparent ceramic is formed. A scintillator refers to a material that glows in response to radiation. The new structure is known as La0.2Y1.8O3.

The researchers say the resulting "nanostructured polycrystalline scintillators" have better energy resolution than currently used materials and caesium iodide and the new scintillator is more stable than sodium iodide. It also has a fast luminescence decay time that is essential for radiation detection because it affects how quickly a detector can work, Chen said.

"Many people use this compound as a host material for lasers or other optical operations, but no one had ever tried this for radiation detection as far as we know," Chen said. "We used a new way to make these materials and found that they hold a lot of promise as a new direction for luminescent scintillator research."

Chen is head of UT Arlington's Security Advances Via Applied Nanotechnology, or SAVANT, Center. In 2010, he became principal investigator on a $1.3 million grant from the National Science Foundation and the U.S. Department of Homeland Security, with the goal of looking for a new type of radiation detector that could help reduce the threat of nuclear materials being brought into the U.S. for terrorism.

Andrew Brandt, a physics professor and co-director of the SAVANT Center, is co-principal investigator on the grant funding and a co-author of the new paper. He said the team is still working to evaluate the new nanomaterials for practical applications and to understand their physics, "but we're very excited about the possibilities this discovery brings with it."

Brandt noted grant funding and the subsequent research stemmed from an interdisciplinary partnership that teamed his expertise in detector and scintillator technology with Chen's knowledge of nanoparticle behavior. "This trans-disciplinary type of research spawned the SAVANT Center, and is in concert with the vision UT Arlington administrators have for the future," he said.

The new paper is called "Luminescence of La0.2Y1.8O3 nanostructured scintillators." It is available online here: http://www.opticsinfobase.org/ol/fulltext.cfm?uri=ol-39-19-5705.

Other co-authors include: Alex Weiss, chair of the UT Arlington Department of Physics; Rasool Kenarangui, senior lecturer in the College of Engineering's Department of Electrical Engineering; Lun Ma, a research assistant professor in physics; and Sunil Sahi, a doctoral student in the Chen laboratory. Co-authors also include Chinese team members from Nanchang Hangkong University and the Chinese Academy of Sciences.

Scientists know that nanoparticles hold promise as a new type of scintillator, but the current method of embedding them into a clear polymer or glass faces the challenge of losing transparency because of a process called aggregation. The UT Arlington work, which involves the synthesis of nanoparticles using wet chemistry and heating them at temperatures much lower than their melting point, avoids the problem of aggregation to maintain their transparency.

Kenarangui said the team tried several samples at the Radiation Measurement and Application Laboratory and the La0.2Y1.8O3 had the best potential of any they examined.

Weiss said the team's work is a breakthrough.

"They've developed a way to take these and process them in such away that you can make a practical device," he said.

The new material is made from two of the least expensive rare earth elements, so it is cost-effective, Chen said. He estimates producing a La0.2Y1.8O3 scintillator would cost a little over $7 per cm3.

In lab tests, the La0.2Y1.8O3 also proved to have better energy resolution than currently used materials sodium iodide and caesium iodide. That resolution is what allows the scintillator to pinpoint the energy of a radiation source, which can be like a signature for investigators.

"If we see a radiation material, we want to know where it came from and those energies can tell us that," Chen said.

Explore further: Physicists create new nanoparticle for cancer therapy

Related Stories

Physicists create new nanoparticle for cancer therapy

April 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Crystals detect threats to national security

July 15, 2011

Using a crystal ball to protect homeland security might seem far-fetched, but researchers at Wake Forest University and Fisk University have partnered to develop crystals that can be used to detect nuclear threats, radioactive ...

Timing particle flight

October 12, 2011

A team of UT Arlington researchers is designing a new, time-of-flight detector that could one day significantly boost measurement capabilities at the Large Hadron Collider, or LHC, in Geneva, Switzerland.

Recommended for you

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gkam
2.3 / 5 (3) Sep 29, 2014
With the hundreds of nuclear powerplants we need better scintillators, instruments which can detect Beta as well as Gamma, and tell the difference. Fukushima has put much high-level material into the air as well as the water. And since nobody knows where the three blobs of former reactor and fuel are, they can begin to fission again on their own.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.