Scientists map protein in living bacterial cells

September 4, 2014, SLAC National Accelerator Laboratory
At left, this phase-contrast micrograph image shows a cluster of rod-shaped bacterial cells (Bacillus thuringiensis, or "Bt") suspended in pure water. The dark rectangular shapes inside the cells correspond to naturally occurring crystals within the cells, while the bright white oval shapes correspond to spores. The transmission electron micrograph images at right show enlarged views of the rectangular crystals contained in the cells. (10.1073/pnas.1413456111)

(Phys.org) —Scientists have for the first time mapped the atomic structure of a protein within a living cell. The technique, which peered into cells with an X-ray laser, could allow scientists to explore some components of living cells as never before.

The research, published Aug. 18 in Proceedings of the National Academy of Sciences, was conducted at the Department of Energy's SLAC National Accelerator Laboratory.

"This is a new way to look inside ," said David S. Eisenberg, a biochemistry professor at University of California, Los Angeles, and Howard Hughes Medical Institute investigator.

"There are a lot of semi-ordered materials in cells where an X-ray laser could provide powerful information," Eisenberg added. They include arrays in that help to fight parasites and infections, insulin-containing structures in the pancreas and structures that break fatty acids and other molecules into smaller units to release energy.

In the experiment at SLAC's Linac Coherent Light Source X-ray laser, a DOE Office of Science User Facility, researchers probed a soil-dwelling bacterium, Bacillus thuringiensis or Bt, that is commonly used as a natural insecticide. Strains of this bacterium produce microscopic and spores that kill insects. Normally scientists need to find ways to crystallize proteins in order to get their structures – typically a time-consuming, hit-and-miss process – but these naturally occurring crystals eliminated that step.

A liquid solution containing the living cells was jetted into the path of the ultrabright LCLS X-ray laser pulses. When a laser pulse struck a crystal, it created a pattern of diffracted X-ray light. More than 30,000 of these patterns were combined and analyzed by sophisticated software to reproduce the detailed 3-D structure of the protein.

Three scenarios suggesting how the integrity of Bacillus thuringiensis (Bt) cells studied at the Linac Coherent Light Source X-ray laser might vary at the moment they are struck by X-rays. The horizontal arrow depicts the flow of the cell samples from a liquid jet to waste collection. The left, middle, and right columns depict three different time points along the liquid jet's stream. Depending on the rate of cell rupture and the flow rate of the jet, the crystals may arrive at the interaction point either (1) inside intact cells, (2) inside ruptured ("lysed") cells, or (3) outside of ruptured cells. (10.1073/pnas.1413456111)

Many of the bacterial cells likely ruptured and spewed their crystal contents as they flew at high speed toward the X-rays. But because it took just thousandths of a second for the cells to reach the X-ray pulses, it's very likely that many of the X-ray images showed protein crystals that were still inside the cells, the researchers concluded.

Importantly, Eisenberg said, "The rest of the cell contents don't obscure the results."

In addition, the 3-D structure of proteins obtained from the crystals in living bacteria cells was essentially identical to that obtained through other methods. Earlier studies had already shown that LCLS can be used to study smaller, easier-to-produce crystals than traditional X-ray sources require, although it typically requires a far larger volume of crystals to achieve atomic-scale resolution.

In an LCLS study published in 2012, a separate team of researchers used protein crystals grown inside live insect cells to study a potential weak spot in a parasite responsible for a disease called African sleeping sickness. But in that experiment they extracted the crystals rather than attempting to study them inside cells.

Eisenberg said possible next steps include improving the technique by developing new sample-delivery methods that are gentler to the cells' structure, and producing faster X-ray pulse rates that capture more images and yield even better results.

"I think this whole area of science is going to continue growing," he said.

Explore further: Data-mining for crystal 'gold' at SLAC's X-ray laser

More information: Michael R. Sawaya, Duilio Cascio, Mari Gingeri et al., PNAS, 18 August 2014 (10.1073/pnas.1413456111)

Related Stories

Data-mining for crystal 'gold' at SLAC's X-ray laser

March 17, 2014

A new tool for analyzing mountains of data from SLAC's Linac Coherent Lightsource (LCLS) X-ray laser can produce high-quality images of important proteins using fewer samples. Scientists hope to use it to  reveal the structures ...

X-ray laser at SLAC maps important drug target

December 31, 2013

(Phys.org) —Researchers have used one of the brightest X-ray sources on the planet to map the 3-D structure of an important cellular gatekeeper known as a G protein-coupled receptor, or GPCR, in a more natural state than ...

X-ray laser explores new uses for DNA building blocks

March 12, 2013

(Phys.org) —The founding father of DNA nanotechnology – a field that forges tiny geometric building blocks from DNA strands – recently came to SLAC to get a new view of these creations using powerful X-ray laser pulses.

Ribosome research takes shape

August 29, 2013

In a new state-of-the-art lab at SLAC National Accelerator Laboratory, components of ribosomes – tiny biological machines that make new proteins and play a vital role in gene expression and antibiotic treatments – form ...

Superbright and fast X-rays image single layer of proteins

February 14, 2014

(Phys.org) —In biology, a protein's shape is key to understanding how it causes disease or toxicity. Researchers who use X-rays to take snapshots of proteins need a billion copies of the same protein stacked and packed ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.