Sandy ridges pose a mystery for future Martian beach vacations

September 19, 2014 by Elizabeth Howell, Universe Today
A September 2014 image from the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter showing transverse aeolian ridges. Credit: NASA/JPL/University of Arizona

What are these thick dune-like features on Mars, and how were they formed? Scientists are still trying to puzzle out these ridges, which you can see above in a more tropical region of the Red Planet called Iapygia, which is south of Syrtis Major. The thick ridges were captured from orbit by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE), and we've included some more intriguing pictures below the jump.

"Called transverse aeolian ridges, or TARs, the features stand up to 6 meters tall and are spaced a few tens of meters apart. They are typically oriented transverse to modern day wind directions, and often found in channels and crater interiors," read an update on the University of Arizona's HiRISE blog.

"The physical process that produces these features is still mysterious. Most TARs display no evidence of internal structure, so it is difficult to discern exactly how they were formed."

A wider view of the Iapygia region on Mars, where transverse aeolian ridges (TARs) — dune-like features — were spotted in 2014. PIcture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

This picture from the NASA spacecraft was taken in Iapygia, which is south of Syrtis Major. While scientists say these look similar to TARs in other parts of the Red Planet, the features have layers on the northwest faces and a paucity on the southern side.

Scientists suggest it's because these TARs may have had wedge-shaped layers, which hints that they would have gotten taller as material was added to the ridges. They hope to do further studies to learn more about how TARs formed in other regions on Mars.

We've included other recent releases from the HiRISE catalog below, so enjoy the Martian vistas!

An image of Eridania Basin, a southern region of Mars that once could been a lake or inland sea. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

Scientists are still puzzling out the nature and formation of these light-toned deposits in the old Vinogradov Crater on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Older lava flows in Daedalia Planum on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

Explore further: NASA image: Giant landform on Mars

Related Stories

NASA image: Giant landform on Mars

June 6, 2014

(Phys.org) —Sandy landforms formed by the wind, or aeolian bedforms, are classified by the wavelength—or length—between crests. On Mars, we can observe four classes of bedforms (in order of increasing wavelengths): ...

Tall boulder rolls down martian hill, lands upright

August 14, 2014

(Phys.org) —A track about one-third of a mile (500 meters) long on Mars shows where an irregularly shaped boulder careened downhill to its current upright position, seen in a July 3, 2014, image from the High Resolution ...

NASA image: Active dune field on Mars

May 5, 2014

Nili Patera is one of the most active dune fields on Mars. As such, it is continuously monitored with the HiRISE (High Resolution Imaging Science Experiment) camera, a science instrument aboard NASA's Mars Reconnaissance ...

Photo from NASA Mars orbiter shows wind's handiwork

January 26, 2012

(PhysOrg.com) -- Some images of stark Martian landscapes provide visual appeal beyond their science value, including a recent scene of wind-sculpted features from the High Resolution Imaging Science Experiment (HiRISE) camera ...

Mars orbiter images rover and tracks in Gale Crater

January 9, 2014

(Phys.org) —NASA's Curiosity Mars rover and its recent tracks from driving in Gale Crater appear in an image taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter ...

A dark and dusty avalanche on Mars

November 6, 2013

Mars may be geologically inactive but that doesn't mean there's nothing happening there—seasonal changes on the Red Planet can have some very dramatic effects on the landscape, as this recent image from the HiRISE camera ...

Recommended for you

Tracing aromatic molecules in the early universe

March 22, 2017

A molecule found in car engine exhaust fumes that is thought to have contributed to the origin of life on Earth has made astronomers heavily underestimate the amount of stars that were forming in the early Universe, a University ...

Sand flow theory could explain water-like streaks on Mars

March 22, 2017

(Phys.org)—A team of researchers from France and the Slovak Republic has proposed a theory to explain the water-like streaks that appear seasonally on the surface of Mars, which do not involve water. In their paper published ...

Ice in Ceres' shadowed craters linked to tilt history

March 22, 2017

Dwarf planet Ceres may be hundreds of millions of miles from Jupiter, and even farther from Saturn, but the tremendous influence of gravity from these gas giants has an appreciable effect on Ceres' orientation. In a new study, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.