A molecular mechanism involved in cellular proliferation characterized

September 29, 2014, Centro Nacional de Investigaciones Oncologicas (CNIO)

Researchers from Guillermo Montoya's team at the Spanish National Cancer Research Centre (CNIO), in collaboration with Isabelle Vernos' Group from the Centre for Genomic Regulation (CRG), have uncovered the molecular interaction between TACC3 and chTOG, key proteins in forming the internal cellular framework that enables and sustains cell division. Published today in Nature Communications, the observations may help to optimise current oncological therapies specifically designed to fight against this framework, named by the scientific community as microtubules.

Key molecules for cellular proliferation

"During cell division, alterations in microtubule formation may bring about chromosome instability and aneuploidy. In other words, alterations in the number of chromosomes, which can lead to a tumour process," explains Montoya. "This is an underlying cause of tumours."

While the role of chTOG in microtubule assembly during has been widely studied, not much is known regarding TACC3 and its contribution to the process.

The team of researchers uncovered the molecular basis of the interaction between these proteins, and how TACC3 recruits chTOG to the microtubules during . "Our results indicate that TACC3's function completely depends on this interaction, so that mutations in the latter prevent chTOG from correctly incorporating into the microtubules," states Montoya. Analyses were performed on the frog Xenopus laevis, an animal model widely used by researchers from around the world to study laws governing cellular division in depth.

Relevance in cancer research

One of the most used and most effective strategies in cancer treatment are drugs targeting microtubules, which halt the growth of tumour cells and induce apoptosis or programmed cellular death.

"Our study on the TACC3-chTOG interaction will allow cellular biologists and researchers on microtubule dynamics to better understand how microtubule assembly is regulated during cellular division," says Montoya, and he anticipates that "it could also help in developing new anti-microtubule drugs, providing more effective therapeutic options in ."

Explore further: Cracks in cellular transport system can be key to new generation of cancer therapies

More information: The XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation. Gulnahar B. Mortuza, et al. Nature Communications (2014)

Related Stories

What makes cell division accurate?

January 23, 2014

As all school-children learn, cells divide using a process called mitosis, which consists of a number of phases during which duplicate copies of the cell's DNA-containing chromosomes are pulled apart and separated into two ...

A key component of cell division comes to light

June 30, 2014

The division of a cell in two requires the assembly of the mitotic spindle, an extremely complex structure, which is the result of the coordinated action of a multitude of proteins and a finely tuned balance of their activities. ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.