From rectal cells to neurons: Keys to understanding cell transdifferentiation

August 19, 2014, CNRS
We can compare this process to the layers of an onion. Transcription factors are at the heart of process efficiency, while epigenetic factors form the outer layers that protect the mechanism from attacks and environmental change. Credit: Elodie Legrand and Sophie Jarriault

How can a specialized cell change its identity? A team from the Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/Université de Strasbourg) investigated a 100% effective natural example of this phenomenon, which is called transdifferentiation. This process, by which some cells lose their characteristics and acquire a new identity, could be more generally involved in tissue or organ regeneration in vertebrates, and is a promising research avenue for regenerative medicine. This study identifies the role of epigenetic factors involved in this conversion, underlines the dynamic nature of the process, and shows the key mechanisms for effective transdifferentiation. This work, conducted in collaboration with the Institut Curie, was published on August 15, 2014 in Science.

Our body is constituted of cells that acquired characteristics during development and that fulfill a precise function in each organ: we call these differentiated cells. Generally cells maintain their specificity until they die, but it has been proven that some cells can change state and acquire new functions. This is rare but is found in many species and is called "transdifferentiation".

The team studied this process in C. elegans, a small transparent nematode, where a rectal cell transforms naturally into a motor neuron. This change from one cell type into another occurs without cell division, by a succession of well defined steps that always lead to the same result. The researchers investigated the factors that make the conversion process so stable.

The team had elucidated the role of several transcription factors in this transdifferentiation. But these new results have shown the role of so-called "epigenetic" factors that can modulate gene expression. Two protein complexes are involved in the mechanism. These enzymes act on a histone and when a mutation changes their action, the transdifferentiation stops and the rectal cell no longer transforms into a neuron.

The researchers observed that the two complexes act at different steps and that their role may change as a function of the transcription factors with which they are associated. These results underline the importance of the correct chain of steps for each of these molecules: the dynamic nature of the transdifferentiation mechanism is essential to its stability.

The respective role of genetic and epigenetic factors in biological processes is a hotly debated subject. This work shows how each of these factors acts in transdifferentiation: handle initiation and progress whereas epigenetic factors guarantee the constant result. The study even goes further, showing that under "normal" conditions, the epigenetic factors are incidental (even when they are absent the conversion occurs relatively efficiently) but that they are indispensable when there are environmental stressors. So they have a crucial role in maximizing the mechanism's efficacy and ensuring that it remains stable in the face of external variations.

Transdifferentiation is a phenomenon that is poorly understood. It may be involved in the organ regeneration that we observe in some organisms, for example newts, which can reconstruct their eye lens after injury. These results bring key new information to help us understand how to control this process and may open the path to promising therapies, in particular in the field of regenerative medicine.

Explore further: Cell transformation a la carte

More information: Sequential Histone Modifying Activities Determines the Robustness of Transdifferentiation; S. Zuryn, A. Ahier, M. Portoso, E. Redhouse White, M.C. Morin, R. Margueron, S. Jarriault; Science; August 15, 2014.

Related Stories

Cell transformation a la carte

October 3, 2011

Researchers from the Haematopoietic Differentiation and Stem Cell Biology group at the Centre for Genomic Regulation (CRG), have described one of the mechanisms by which a cell (from the skin, for example) can be converted ...

One step closer to cell reprogramming

May 6, 2014

In 2012, John B. Gurdon and Shinya Yamakana were awarded the Nobel Prize in medicine for discovering that adult cells can be reprogrammed into pluripotent ones (iPS); the cells obtained are capable of behaving in a similar ...

Lipids boost the brain

August 11, 2014

Consuming oils with high polyunsaturated fatty acid content, in particular those containing omega-3s, is beneficial for the health. But the mechanisms underlying this phenomenon are poorly known. Researchers at the Institut ...

How to change cell types by flipping a single switch

December 4, 2013

With few exceptions, cells don't change type once they have become specialized—a heart cell, for example, won't suddenly become a brain cell. However, new findings by researchers at UC Santa Barbara have identified a method ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.