ALMA pinpoints Pluto to help guide NASA's New Horizons spacecraft

August 5, 2014
The cold surface of Pluto and its largest moon Charon as seen with ALMA on July 15, 2014. Credit: NRAO/AUI/NSF

(Phys.org) —Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) are making high-precision measurements of Pluto's location and orbit around the Sun to help NASA's New Horizons spacecraft accurately home in on its target when it nears Pluto and its five known moons in July 2015.

Though observed for decades with ever-larger on Earth and in space, astronomers are still working out Pluto's exact position and path around our Solar System. This lingering uncertainty is due to Pluto's extreme distance from the Sun (approximately 40 times farther out than the Earth) and the fact that we have been studying it for only about one-third of its orbit. Pluto was discovered in 1930 and takes 248 years to complete one revolution around the Sun.

"With these limited observational data, our knowledge of Pluto's position could be wrong by several thousand kilometers, which compromises our ability to calculate efficient targeting maneuvers for the New Horizons spacecraft," said New Horizons Project Scientist Hal Weaver, from the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

The New Horizons team made use of the ALMA positioning data, together with newly analyzed visible light measurements stretching back to Pluto's discovery, to determine how to perform the first such scheduled course correction for targeting, known as a Trajectory Correction Maneuver (TCM), in July. This maneuver helped ensure that New Horizons uses the minimum fuel to reach Pluto, saving as much as possible for a potential extended mission to explore Kuiper Belt objects after the Pluto system flyby is complete.

ALMA pinpoints Pluto to help guide NASA’s New Horizons spacecraft
Animated image of ALMA data showing the motion of the moon Charon around the icy dwarf planet Pluto. Credit: B. Saxton (NRAO/AUI/NSF)

To prepare for this first TCM, astronomers needed to pinpoint Pluto's position using the most distant and most stable reference points possible. Finding such a reference point to accurately calculate trajectories of such small objects at such vast distances is incredibly challenging. Normally, stars at great distances are used by optical telescopes for astrometry (the positioning of things on the sky) since they change position only slightly over many years. For New Horizons, however, even more precise measurements were necessary to ensure its encounter with Pluto would be as on-target as possible.

The most distant and most apparently stable objects in the Universe are quasars, galaxies more than 10 billion light-years away. Though quasars appear very dim to optical telescopes, they are incredibly bright at radio wavelengths, particularly the millimeter wavelengths that ALMA can see.

"The ALMA astrometry used a bright quasar named J1911-2006 with the goal to cut in half the uncertainty of Pluto's position," said Ed Fomalont, an astronomer with the National Radio Astronomy Observatory in Charlottesville, Virginia, and currently assigned to ALMA's Operations Support Facility in Chile.

ALMA was able to study Pluto and its largest moon Charon by picking up the radio emission from their cold surfaces, which are about 43 degrees Kelvin (-230 degrees Celsius).

The team first observed these two icy worlds in November 2013, and then three more times in 2014—once in April and twice in July. Additional observations are scheduled for October 2014.

"By taking multiple observations at different dates, we allow Earth to move along its orbit, offering different vantage points in relation to the Sun," said Fomalont. "Astronomers can then better determine Pluto's distance and orbit." This astronomical technique is called measuring Pluto's parallax.

"We are very excited about the state-of-the-art capabilities that ALMA brings to bear to help us better target our historic exploration of the Pluto system," said New Horizons Principal Investigator Alan Stern of the Southwest Research Institute in Boulder, Colorado. "We thank the entire ALMA team for their support and for the beautiful data they are gathering for New Horizons."

Explore further: New Horizons only one year from Pluto (w/ Video)

Related Stories

New Horizons only one year from Pluto (w/ Video)

July 15, 2014

In July 2015, NASA will discover a new world. No one knows what to expect when the alien landscape comes into focus. There could be icy geysers, towering mountains, deep valleys, even planetary rings.

Telescope digs for ice on Pluto

June 25, 2014

(Phys.org) —In just over a year, the New Horizons spacecraft will fly past Pluto, giving us our first detailed look at the dwarf planet. Anticipating this encounter, St Andrews undergraduate student Ailsa Whitelaw and her ...

Countdown to Pluto

January 15, 2014

One of the fastest spacecraft ever built—NASA's New Horizons—is hurtling through the void at nearly one million miles per day. Launched in 2006, it has been in flight longer than some missions last, and it is nearing ...

Recommended for you

New survey hints at exotic origin for the Cold Spot

April 25, 2017

A supervoid is unlikely to explain a 'Cold Spot' in the cosmic microwave background, according to the results of a new survey, leaving room for exotic explanations like a collision between universes. The researchers, led ...

Astronomers detect dozens of new quasars and galaxies

April 25, 2017

(Phys.org)—A team of astronomers led by Yoshiki Matsuoka of the National Astronomical Observatory of Japan (NAOJ) has detected a treasure trove of new high-redshift quasars (or quasi-stellar objects) and luminous galaxies. ...

Team discovers lull in Mars' giant impact history

April 25, 2017

From the earliest days of our solar system's history, collisions between astronomical objects have shaped the planets and changed the course of their evolution. Studying the early bombardment history of Mars, scientists at ...

Preliminary results of Breakthrough Listen project released

April 25, 2017

(Phys.org)—The team of researchers working on the Breakthrough Listen project (affiliated with SETI) has released preliminary findings after sifting through several petabytes of data obtained from three telescopes involved ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.