

Progress in whole-lifecycle software
architecture modeling

June 25 2014

The gradually increasing complexity of user requirements and runtime
environments of software demands software to be of more capabilities
and thus become more complex than ever. In the past several decades,
there was a trend that the scale of software has been increasing
continuously. Nowadays, there are tens or even hundreds of million lines
of code in a large scale software system. For example, the Windows
operating system scales from 15 million lines of code in 1995 to 60
million lines of code in 2007; in 2011, the scale of software in BMW 7
Series reaches 200 million lines of code; the scale of software in Airbus
380 even reaches 1 billion lines of code. When the scale and complexity
of software is beyond what developers and techniques can control, the
quality and efficiency of software would fail to satisfy user
requirements, leading to the phenomena of software crisis. Software
engineering is the main effort to deal with software crisis, whose central
goal is to capture and control software complexity.

A research team in Peking University extends software architecture that
originally aims to control the high-level structural complexity in the
design phase of software, to the whole-lifecycle of software, and
proposes an architecture-centric software development method, named
ABC. The ABC method unifies the core artifacts in software
development into various software architecture models, and the core
activities in software development into continuous and iterative
refinement, mapping, and transformation of the software architecture
models, respectively. As a result, ABC realizes consistent, flexible, and
systematic modeling and control of high-level software structural

1/4

https://phys.org/tags/software/

complexity. A comprehensive article reporting this research (with the
title ABC: a method of software architecture modeling in the whole
lifecycle) is published in 2014 (5) issue of Science China: Information
Science. The main investigators of this research include Hong Mei, Gang
Huang, Lu Zhang, and Wei Zhang.

The research on the ABC method starts from 1999 for large scale
enterprise software and from 2006 for Internet-based software. The
central idea of ABC is to introduce software architecture into all the
phases of software development, utilize various automated
transformation mechanisms provided by software tools to bridge the gap
between the high-level design and low-level implementation, and
generate the code framework and glue code based on the support of
execution platforms. A set of tools and platforms (including a feature
modeling tool, a software architecture modeling tool, a meta-modeling
tool, a source code generation tool, a service composition tool, a
component management platform, and a componentized software
execution support platform) are implemented to support the ABC
method. The ABC method and its supporting tool have been used in the
modeling of the information system for Beijing 2008 Olympic Games,
the design and modeling for a military information system, and the
development of a credit risk management system for a commercial bank.

As a central artifact in the design phase, software architecture has long
been a hot research area in software engineering. Compared with
existing research on software architecture, the major distinctive features
of the ABC method are fourfold. First, ABC defines the basic building
blocks of software architecture as "components", instead of "objects"
which are of finer granularity and used for complexity control at the
source code level, and treats connectors between components as firs-
order entities as well. Second, ABC abstracts the functions or services
provided by the execution platforms into constraints and connectors, so
as to naturally utilize them to realize the requirements on performance,

2/4

reliability, and security. Third, ABC extends software architecture to the
requirements analysis phase and also to the maintenance and evolution
phase, so as to control software complexity in the whole lifecycle, based
on the intrinsic connections between software complexities in different
phases. Finally, several important properties of software architecture in
different phases have been found and investigated, including the
relationships between different requirement dependencies, the forward
traceability between the feature model and software architecture, the
mechanism and properties of runtime software architecture, and the
backward traceability between system implementation and system
design.

With the rise of the next generation of information technology (such as
cloud computing, mobile Internet, and Internet of things), there has been
a significant change in the paradigm of software; as a result, the
complexity of software shows some new trends. Under these new
application modes and runtime environments, ABC still possesses its
essential value both in theory and practice, but also faces new challenges
and opportunities, such as the fusion of requirements engineering and
knowledge engineering, the interaction between software reuse and
artificial intelligence, the cloud-based software engineering, and the
Internet operating systems. These issues will be the possible future work
of ABC.

 More information: Mei H, Huang G, Zhang L, Zhang W, ABC: a
method of software architecture modeling in the whole lifecycle. SCI
CHINA Info. Sci, 2014 Vol. 44 (5): 564-587.
info.scichina.com:8084/sciF/CN … abstract514469.shtml

Provided by Science China Press

3/4

https://phys.org/tags/software+engineering/
http://info.scichina.com:8084/sciF/CN/abstract/abstract514469.shtml

Citation: Progress in whole-lifecycle software architecture modeling (2014, June 25) retrieved 2
May 2024 from https://phys.org/news/2014-06-whole-lifecycle-software-architecture.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

https://phys.org/news/2014-06-whole-lifecycle-software-architecture.html
http://www.tcpdf.org

