

Waveguiding and detecting structure for surface plasmon polaritons on silicon

June 25 2014

Schematic diagrams and electric field intensity distributions for (a) a multi-slit structure, (b) a disk array, and (c) no diffraction structure at the waveguide end.

Toyohashi Tech researchers have developed a simple, low-loss waveguide for Surface Plasmon Polaritons (SPPs) that is applicable to nanoscale photonic integrated circuits on silicon.

Surface plasmon polaritons (SPPs) are waves that propagate along the surface of a conductor and collective oscillation of electrons coupled with the optical field at the nano-scale beyond the <u>diffraction limit</u> of propagating light waves. Recently, there is increasing interest in SPPs as signal carriers in nanoscale <u>integrated circuits</u> to increase the degree of

accumulation and reduce power consumption.

However, low-loss SPP waveguides with detectors have not been developed for applying to nanoscale integrated circuits.

Now, Mitsuo Fukuda and his group at Toyohashi Tech have developed a simple, low-loss waveguide for SPPs that is applicable to nanoscale integrated circuits.

A thin metal film deposited on a <u>silicon substrate</u> was terminated with a diffraction structure (a multi-slit or a metal disk array) at the end to guide the SPPs transmitted on the surface (air-metal interface) to the opposite side of the metal (metal-silicon interface). A Schottky barrier is formed at the metal-silicon interface, and the free electrons in the metal are excited by the guided SPPs and then cross over the barrier. The overflowing electrons result in observable photocurrents.

The waveguide developed in this research enabled the efficient propagation of SSPs in 1550-nm-wavelength bands (transparent to silicon) along the Au film <u>surface</u>, and the photocurrents were much larger than for waveguides without the diffraction structure (26 times for the grating structure and 10 times for the disk array).

This waveguide device is expected to contribute to nanoscale photonic integrated circuits on silicon.

More information: M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda. "Low-loss waveguiding and detecting structure for surface plasmon polaritons." *Applied Physics Letters*, 104, 081111 (2014). DOI: 10.1063/1.4866792

Provided by Toyohashi University of Technology

Citation: Waveguiding and detecting structure for surface plasmon polaritons on silicon (2014, June 25) retrieved 18 April 2024 from https://phys.org/news/2014-06-waveguiding-surface-plasmon-polaritons-silicon.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.