Long-range tunneling of quantum particles

June 12, 2014
Quantum particles transmit through a whole series of barriers under conditions where a single particle could not do the move. Credit: University of Innsbruck

The quantum tunnel effect manifests itself in a multitude of well-known phenomena. Experimental physicists in Innsbruck, Austria, have now directly observed quantum particles transmitting through a whole series of up to five potential barriers under conditions where a single particle could not do the move.

One of the most remarkable consequences of the rules in is the capability of a to penetrate through a potential barrier even though its energy would not allow for the corresponding classical trajectory. This is known as the quantum tunnel effect and manifests itself in a multitude of well-known phenomena. For example, it explains nuclear radioactive decay, fusion reactions in the interior of stars, and electron transport through . Tunneling also is at the heart of many technical applications, for instance it allows for imaging of surfaces on the atomic length scale in scanning tunneling microscopes.

All the above systems have in common that they essentially represent the very fundamental paradigm of the tunnel effect: a single particle that penetrates through a single barrier. Now, the team of Hanns-Christoph Nägerl, Institute for Experimental Physics of the University of Innsbruck, Austria, has directly observed tunneling dynamics in a much more intriguing system: They see quantum particles transmitting through a whole series of up to five potential barriers under conditions where a single particle could not do the move. Instead the particles need to help each other via their strong mutual interactions and via an effect known as Bose enhancement.

In their experiment the scientists place a gas of Cesium atoms at extremely low temperatures just above absolute zero temperature into a potential landscape that is deliberately engineered by laser light. This so-called optical lattice forms a regular and perfect structure constituting the multiple tunneling barriers, similar to a washboard. As temperatures are so low and thus the atoms' kinetic energies are so tiny, the only way to move across the washboard is via tunneling through the barriers. The tunneling motion is initiated by applying a directed force onto the atoms along one of the lattice axes, that is, by tilting the washboard. It is now one of the crucial points in the experiment that the physicists control through how many barriers the particles penetrate by the interplay between the interaction and the strength of the force in conjunction with Bose enhancement as a result of the particles' quantum indistinguishability.

Very similar to a massive object moving in the earth's gravitational field, the tunneling atoms should lose when they move down the washboard. But where can they deposit this energy in such a perfect and frictionless environment? It's the interaction energy between the atoms when they share the same site of the lattice that compensates for the potential energy. As a result, the physicists found that the tunneling motion leads to discrete resonances corresponding to the number of barriers the penetrate through.

It is left for the future to explore the role of such long-range processes for lattice systems with ultracold atoms in the context of quantum simulation and , or for different physical settings, for instance electronic quantum devices, molecular or even biological systems.

Explore further: Breakthrough paper on the Aharonov-Bohm effect published

More information: "Observation of many-body dynamics in long-range tunneling after a quantum quench", Science, 2014. www.sciencemag.org/lookup/doi/ … 1126/science.1248402

Related Stories

Breakthrough paper on the Aharonov-Bohm effect published

May 14, 2014

Chapman University affiliated quantum physicist Yutaka Shikano, Ph.D., has published a milestone paper in the journal Nature Communications. The title of the article is "Aharonov-Bohm effect with quantum tunneling in linear ...

The secrets of tunneling through energy barriers

November 7, 2011

Electrons moving in graphene behave in an unusual way, as demonstrated by 2010 Nobel Prize laureates for physics Andre Geim and Konstantin Novoselov, who performed transport experiments on this one-carbon-atom-thick material. ...

Coupled particles cross energy wall

May 29, 2013

For the first time, a new kind of so-called Klein tunnelling-representing the quantum equivalent of crossing an energy wall- has been presented in a model of two interacting particles. This work by Stefano Longhi and Giuseppe ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.