
 

High-performance computing programming
with ease

June 17 2014

As high-performance computing (HPC) bends to the needs of "big data"
applications, speed remains essential. But it's not only a question of how
quickly one can compute problems, but how quickly one can program
the complex applications that do so.

"In recent years, people have started to do many more sophisticated
things with big data, like large-scale data analysis and large-scale
optimization of portfolios," says Alan Edelman, a professor of applied
mathematics who is affiliated with MIT's Computer Science and
Artificial Intelligence Laboratory. "There's demand for everything from
recognizing handwriting to automatically grading exams."

The challenge is that there are only so many programmers capable of
such wizardry, and the programs are getting more and more complex and
time-consuming to develop. "At HPC conferences, people tend to stand
up and boast that they've written a program so it runs 10 or 20 times
faster," Edelman says. "But it's the human time that in the end matters
the most."

A few years ago, when an HPC startup Edelman was involved in—called
Interactive Supercomputing—was acquired by Microsoft, he launched a
new project with three others. The goal was to develop a new
programming environment that was designed specifically for speed, but
which would also reduce development time.

The group, which includes Jeff Bezanson, a PhD student at MIT, and

1/5



 

Stefan Karpinski and Viral Shah, both formerly at the University of
California at Santa Barbara, had all tried MPI (message-passing
interface), which was specifically targeted at parallel processing. But
MPI was tough going even for top-level programmers. "When you
program in MPI, you're so happy to have finished the job and gotten any
kind of performance at all, you'll never tweak it or change it," Edelman
says.

The group set out to develop a programming language that could match
MPI's parallel-processing support, while generating code that ran as fast
as C. The key point, however, was that it would need to be as easy to
learn and use as Matlab, Mathematica, Maple, Python, and R. To
encourage rapid development of the language, as well as enhance
collaboration, the language would need to be open-source, like Python
and R.

In 2012, the project released the results of its labor, called "Julia," under
an MIT open-source license. Although it's still a work in progress, Julia
has already met and far exceeded its requirements, Edelman says.

"Julia allows you to get in there and quickly develop something usable,
and then modify the code in a very flexible way," Edelman says. "With
Julia, we can play around with the code and improve it, and become very
sophisticated very quickly. We're all superheroes now—we can do things
we didn't even know we could do before."

On the surface, Julia is much like Matlab, and offers Lisp-like macros,
making it easier for programmers to get started. It provides a zippy
LLVM-based just-in-time compiler, distributed parallel execution, and
high numerical accuracy. Julia also features a mathematical function
library, most of which is written in Julia, as well as C and Fortran
libraries.

2/5



 

But Julia differs significantly from Matlab and the other environments in
ways that Edelman is only now beginning to understand. "It's one of
those things where you just have to try it awhile," he says. "Once you get
in there, you see it's like nothing you've ever seen before. With Julia,
we're trying to change the way people solve a problem, almost by solving
the problem without immediately trying to. It lets your program evolve
to be the thing that you really imagined it to be, not just the first thing
you wanted."

One innovation is Julia's concept of "multiple dispatch," which lets users
define function behavior across combinations of argument types. This
provides a dynamic type system broken down into types, enabling
greater abstraction.

"Julia gives us the power of abstraction, which gives us performance,
and allows us to deal with large data and create programs very quickly,"
says Edelman. "We sometimes have races between two equally good
programmers, and the Julia programmer always wins."

Matlab and the other environments take previously written Fortran or C,
or proprietary code, "and then glue it together with what I call bubble
gum and paper clips," Edelman says. This offers the advantage of easy
access to programs written in more difficult languages, but at a cost.
"When you're ready to code yourself, you don't have the benefit of the
Fortran or C speeds," he adds.

Julia, too, can integrate programs written in other languages. But "we
also make it really easy to develop in Julia all the way down," Edelman
explains. "With Julia, you don't face a big barrier when you need to get
higher speeds. If you want to use other languages, it's fine, but if you
want to do fancier things, the barrier to entry is much lower."

Edelman lives a "double life," he says. In addition to helping developing

3/5



 

Julia, writing HPC applications, and teaching MIT students, he's also a
theoretical mathematician with a focus on random matrix theory. In this
role, Edelman is also a consumer of HPC simulations written in Julia: As
he puts it, "I eat my own dog food."

Edelman spends a lot of time running Monte Carlo simulations, in which
he generates a lot of random instances, and then tries to "understand
collectively what might happen," he explains. "I love using Julia for
Monte Carlo because it lends itself to lots of parallelism. I can grab as
many processors as I need. I can grab shared or distributed memory from
different computers and put them altogether. When you use one
processor, it's like having a magnifying glass, but with Julia I feel like
I've got an electron microscope. For a little while nobody else had that
and it was all mine. I loved that."

Open source helps kickstart global community

The experience of co-developing Julia has deepened Edelman's belief in
the power of open-source software. Thanks to Julia's open-source
licensing, as well as the enthusiasm it generates among HPC developers,
collaboration has been heightened in both the development of the
language and in working together on Julia programs.

"We have hundreds of developers all over the world collaborating on
Julia," Edelman says. "It's not like in the old days, when I would recruit
the best Ph.D. students I could find at MIT and put them on a project.
With Julia, people are joining us from around the world, and doing great
things."

The open-source licensing has helped to quickly build an "incredible
worldwide community," which Edelman says is just as important as the
software's technical capabilities. "People are collaborating at so many
levels it's amazing," he says. "Julia is out there, so I don't even know

4/5



 

what's going to show up tomorrow morning. People will ask me if there's
an optimization package of a certain kind for Julia, and I say, 'I guess
not,' and then I wake up the next morning and somebody's just written
one."

One key to accelerating the development of Julia was the decision to
create a package manager that eases the development of add-ons. These
include an IJulia app developed in conjunction with the IPython
community that provides a browser-based graphical notebook interface.

As with most other programming languages, Julia lets you split a task up
into different chunks. Julia is notable, however, for how easy it is to
work on the same piece of software together, Edelman says. In one of
his recent HPC classes at MIT, a student developed a project where one
programmer could start developing Julia on one terminal, and let others
start typing on the same code as well.

"All these students started typing together," Edelman says. "It was an
experience I'd never seen before. It was a great party, and a lot of fun. It
changes everything about developing software."

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: High-performance computing programming with ease (2014, June 17) retrieved 26
April 2024 from https://phys.org/news/2014-06-high-performance-ease.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://web.mit.edu/newsoffice/
https://phys.org/news/2014-06-high-performance-ease.html
http://www.tcpdf.org

