Big solar blowouts hold clue to space weather

June 23, 2014 by Robert Massey
A montage of images showing how the simulation closely matches observed events on the Sun. On the left are two images of the blowout jet eruption of 20 September 2008 observed using the Hinode observatory, showing how it changed over a period of five minutes. On the right are two frames from Eon Jui Lee’s simulation of a blowout jet eruption. Credit: Hinode / Eon Jui Lee / University of St Andrews

(Phys.org) —Solar jets are ejections from the surface of the Sun, where 1-10 tonnes of hot material are expelled at speeds of up to 1000 kilometres per second. Using space based observatories like Hinode and STEREO, solar physicists have recently discovered a new type of jet known as 'blowout' jets, which seem to be like the Coronal Mass Ejections (CMEs) that can disrupt the magnetic field of the Earth, but on a much smaller scale.

Now a St Andrews scientist, Dr Eon Jui Lee, has created a 3D model of these events for the first time, with compelling computer-generated simulations that match the jets' appearance from space. He will present his work at the National Astronomy Meeting (NAM 2014) in Portsmouth from 23-26 June.

The most common class of 'hot' solar jets are the 'standard' X-ray jets, which are believed to be formed by '' i.e. when of opposite direction ('north' and 'south') come into contact. Blowout jets are different and seem to be triggered by the eruption of the at the base of the jet, which carries a twisted filament of material. At a temperature of 10,000 – 100,000 degrees Celsius, this is much cooler than the outer atmosphere of the Sun, where temperatures are typically between 1 and 2 million degrees.

On the Sun material is found in the form of plasma, a gaseous state where some electrons are stripped away from normally neutral atoms. In blowout jets, the eruption of relatively cool plasma leads to magnetic reconnection too and this in turn drives the eruption of hot plasma, so that both hot and cold material are carried into space. This makes them like miniature CMEs and suggests that a similar mechanism is at work.

The video will load shortly
A black and white movie made using frames from Eon Jui Lee's simulation, showing how a blowout jet erupts over a period of seven hours. The material in the jet quickly rises more than 60,000 kilometres above the surface of the Sun (at bottom) into the corona. Credit: Eon Jui Lee / University of St Andrews

Dr Lee's model shows the change from standard to blowout jets and frames from the simulation show a close fit between his work and pictures from the Hinode satellite. The model suggests that the twisted magnetic fields in standard become helical and drive the blowouts. Waves in the jet then transport material and energy into the of the Sun and the wider Solar System.

The video will load shortly
A colour movie made using frames from Eon Jui Lee's simulation, showing how a blowout jet erupts over a period of seven hours. The material in the jet quickly rises more than 60,000 kilometres above the surface of the Sun (at bottom) into the corona. Credit: Eon Jui Lee / University of St Andrews

He comments: "Solar physicists work hard to understand activity on the surface and in the atmosphere of the Sun. To see my simulations match real observations so well is wonderful. I hope that this work will help my peers working on space weather better understand and perhaps get more warning of events that might disrupt life on Earth."

Explore further: Puffing Sun gives birth to reluctant eruption

Related Stories

Puffing Sun gives birth to reluctant eruption

June 23, 2014

(Phys.org) —A suite of Sun-gazing spacecraft, SOHO, STEREO and Solar Dynamics Observatory (SDO), have spotted an unusual series of eruptions in which a series of fast 'puffs' force the slow ejection of a massive burst of ...

The solar wind breaks through the Earth's magnetic field

June 10, 2014

Space is not empty. A wind of charged particles blows outwards from the Sun, carrying a magnetic field with it. Sometimes this solar wind can break through the Earth's magnetic field. Researchers at the Swedish Institute ...

Image: The abstract science of the dynamic Sun

January 14, 2014

The placid appearance of the Sun's surface belies a hot fireball of plasma in constant turmoil. A granular network invisible to the naked eye pervades the solar disc, with cells of hotter and colder plasma popping up, merging ...

Discovering a hidden source of solar surges

June 3, 2014

Cutting-edge observations with the 1.6-meter telescope at Big Bear Solar Observatory (BBSO) in California have taken research into the structure and activity of the Sun to new levels of understanding. Operated by New Jersey ...

Solar tsunami used to measure Sun's magnetic field

July 11, 2013

(Phys.org) —A solar tsunami observed by NASA's Solar Dynamics Observatory (SDO) and the Japanese Hinode spacecraft has been used to provide the first accurate estimates of the Sun's magnetic field.

Recommended for you

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

Video: A colorful 'landing' on Pluto

January 20, 2017

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip ...

The evolution of massive galaxy clusters

January 20, 2017

Galaxy clusters have long been recognized as important laboratories for the study of galaxy formation and evolution. The advent of the new generation of millimeter and submillimeter wave survey telescopes, like the South ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.