Scientists use 3D printing to make artificial blood vessels

May 31, 2014
Artificial blood vessels are created using hydrogel constructs that combine advances in 3-D bioprinting technology and biomaterials. Credit: Khademhosseini Lab.

The tangled highway of blood vessels that twists and turns inside our bodies, delivering essential nutrients and disposing of hazardous waste to keep our organs working properly has been a conundrum for scientists trying to make artificial vessels from scratch. Now a team from Brigham and Women's Hospital (BWH) has made headway in fabricating blood vessels using a three-dimensional (3D) bioprinting technique.

The study is published online this month in Lab on a Chip.

"Engineers have made incredible strides in making complex such as those of the heart, liver and lungs," said senior study author, Ali Khademhosseini, PhD, biomedical engineer, and director of the BWH Biomaterials Innovation Research Center. "However, creating remains a critical challenge in tissue engineering. We've attempted to address this challenge by offering a unique strategy for vascularization of hydrogel constructs that combine advances in 3D bioprinting technology and biomaterials."

The researchers first used a 3D bioprinter to make an agarose (naturally derived sugar-based molecule) fiber template to serve as the mold for the . They then covered the mold with a gelatin-like substance called hydrogel, forming a cast over the mold which was then reinforced via photocrosslinks.

"Our approach involves the printing of agarose fibers that become the blood vessel channels. But what is unique about our approach is that the fiber templates we printed are strong enough that we can physically remove them to make the channels," said Khademhosseini. "This prevents having to dissolve these template layers, which may not be so good for the cells that are entrapped in the surrounding gel."

Khademhosseini and his team were able to construct microchannel networks exhibiting various architectural features. They were also able to successfully embed these functional and perfusable microchannels inside a wide range of commonly used hydrogels, such as methacrylated gelatin or poly(ethylene glycol)-based hydrogels at different concentrations.

Methacrylated gelatin laden with cells, in particular, was used to show how their fabricated vascular networks functioned to improve mass transport, cellular viability and cellular differentiation. Moreover, successful formation of endothelial monolayers within the fabricated channels was achieved.

"In the future, 3D printing technology may be used to develop transplantable tissues customized to each patient's needs or be used outside the body to develop drugs that are safe and effective," said Khademhosseini.

Explore further: Bioprinting new organs

Related Stories

Bioprinting new organs

April 3, 2014

With the new 3D Bioprinter, the research group of Professor Paul Gatenholm at the Department of Chemical and Biological Engineering exploits new possibilities of tissue engineering and organ regeneration.

Building heart tissue that beats

March 18, 2014

When a heart gets damaged, such as during a major heart attack, there's no easy fix. But scientists working on a way to repair the vital organ have now engineered tissue that closely mimics natural heart muscle that beats, ...

Biomaterials: Hydrogel fibers make tissue generation efficient

December 19, 2013

Much research has been devoted to generating viable tissues to replace damaged tissues in organs, such as the liver. Incorporating cellular and vascular networks into engineered tissues increases the potential of the biomaterial ...

Liver-like device, via 3-D printer

May 13, 2014

(Phys.org) —Nanoengineers at the University of California, San Diego have developed a 3-D-printed device inspired by the liver to remove dangerous toxins from the blood.

An essential step toward printing living tissues

February 19, 2014

A new bioprinting method developed at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard School of Engineering and Applied Sciences (SEAS) creates intricately patterned 3D tissue ...

Recommended for you

New X-ray spectroscopy explores hydrogen-generating catalyst

November 22, 2017

Using a newly developed technique, researchers from Japan, Germany and the U.S. have identified a key step in production of hydrogen gas by a bacterial enzyme. Understanding these reactions could be important in developing ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

David Sten
not rated yet Jun 03, 2014
What is the "BWH Biomaterials Innovation Research Center"? There is no webpage or comment on internet about it except for this news. Did you just make it up to make a small fry look important?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.