Pumice models could help protect shipping

May 19, 2014 by Tom Marshall
Pumice models could help protect shipping

Scientists have used a computer model of ocean circulation to predict the movement of the rafts of floating pumice given off by an erupting underwater volcano.

These rafts can cause problems for ships, so the researchers hope their work will lead to the development of early-warning systems to let mariners avoid risky areas in the wake of an eruption.

The researchers used NEMO, the UK's high-resolution model of , to represent the around Havre, a volcano deep under the southwest Pacific that erupted in July 2012. They then used its output to calculate the movements of thousands of particles representing areas of drifting pumice.

Finally, they compared the results with what satellite images and sailors' sightings tell us actually happened. The match was encouragingly close, showing that although it needs more development the technique is capable of accurately predicting the movement of these .

'The eruption was far from coastal interference, so it produced a single raft spanning over 400km2 in one day, initiating a gigantic, high-precision natural experiment in surface dispersion,' says Dr Bob Marsh of the University of Southampton.

He was part of a team led by Dr Martin Jutzeler of the National Oceanography Centre, which recently published their findings in Nature Communications. 'It's only recently that we've had oceanographic models that represent how things spread out in the ocean accurately enough to do this kind of thing, so it's a big opportunity for new research,' Marsh adds.

His methods can be used to predict the movement of any floating objects that are carried about the ocean by currents – he's already applied them to everything from debris associated with accidents to icebergs and baby turtles. Although NEMO itself needs to run on national supercomputers, the additional calculations he performs based on its output can be done in mere hours on normal computing hardware, allowing scientists to respond quickly to natural disasters.

'If we see a big undersea volcanic eruption, we can react within 24-48 hours to produce maps of where pumice will drift to over time,' he says. 'All we need to know is where the volcano is.'

Pumice rafts are mostly made up of tiny pieces of floating rock, less than a centimetre across, so in most cases they aren't likely to breach a ship's hull. They can endanger its ability to keep moving, though, for example by clogging up water intakes so that engines have no cooling and overheat. 'It's not like an iceberg that can sink the ship, but it could effectively cordon off a large area of for several weeks, which could cost the maritime industry a lot of money,' Marsh says.

He now hopes to work with the shipping and marine insurance industries, as well as with colleagues in the Met Office, to investigate whether these techniques can be turned into a useful information service for sailors – perhaps an add-on to the Met Office's existing services. He is already working on developing an early-warning system for icebergs, and says it would be relatively easy to incorporate pumice raft forecasting.

Explore further: Underwater volcano creates huge floating islands of rock, disrupts shipping

More information: "On the fate of pumice rafts formed during the 2012 Havre submarine eruption." Martin Jutzeler, Robert Marsh, Rebecca J. Carey, James D. L. White, Peter J. Talling & Leif Karlstrom. Nature Communications 5, Article number: 3660. DOI: 10.1038/ncomms4660

Related Stories

A hitchhiker's guide to pumice

September 2, 2013

A floating raft of pumice created by an underwater volcanic eruption near New Zealand, and teeming with marine hitchhikers, has been spotted in the northern Great Barrier Reef.

Research team discovers third type of volcanic eruption

January 21, 2013

(Phys.org)—A team of researchers from New Zealand's Victoria University has discovered what its members believe to be, a third type of volcanic eruption. In their paper published in the journal Nature Geoscience, they describe ...

Bizarre rock 'ice shelf' found in Pacific

August 10, 2012

A huge cluster of floating volcanic rocks covering almost 26,000 square kilometres (10,000 square miles) has been found drifting in the Pacific, the New Zealand navy said Friday.

Recommended for you

Multinationals act on ocean-clogging plastics

January 16, 2017

Forty of the world's biggest companies assembled in Davos agreed on Monday to come up with cleaner ways to make and consume plastic as waste threatens the global eco-system, especially in oceans.

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Soil pores, carbon stores, and breathing microbes

January 16, 2017

Researchers at the Pacific Northwest National Laboratory (PNNL) recently studied how moisture influences soil heterotrophic respiration. That's the breathing-like process by which microbes convert dead organic carbon in the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.