May the force (shoes) be with you: NASA evalutes force shoe technology

May 28, 2014, NASA/Johnson Space Center
NASA will fly the ForceShoe, developed by XSENS, to the International Space Station in May 2014. The ForceShoe engineering evaluation will help validate the use of portable load monitoring devices in space. Credit: NASA

Maintaining astronaut bone and muscle health in microgravity is an ongoing concern for NASA, and now the agency is "forcing" the issue with a new investigation.

On May 29, 2014, NASA will fly the ForceShoe, designed by XSENS, to the International Space Station (ISS) and, although these shoes don't measure the same force of Star Wars lore, they will help NASA collect data for studying the loads, or force, placed on crew member bodies during exercise on the 's Advanced Resistive Exercise Device (ARED).

To reduce the loss of bone and skeletal muscle strength experienced by astronauts during long duration spaceflight, NASA developed the ARED. The device provides crew members with the ability to perform weight-bearing exercises in space by supplying resistance through the power of vacuum cylinders.

"ARED is a sophisticated exercise device," said Andrea Hanson, Ph.D. and ISS Exercise Hardware Specialist. "Although it has helped NASA provide better health outcomes for crew members, there is still progress to be made in understanding the effects of exercise on bone and muscle health, and the ForceShoe will help us do that."

The Force Shoes investigation is an engineering evaluation. Although a number of portable load monitoring technologies (often referred to as force shoes) are under evaluation on Earth, NASA elected to fly the ForceShoe on the space station because it offers comprehensive load measures. During the investigation, researchers will use the shoe to measure exercise loads and ground reaction forces. These are the forces supplied by the ground to a body in contact with it. The device measures force in three axes: up and down, side-to-side and front-to-back. It also captures the torque, or twisting force, applied under foot during ARED exercise.

Maintaining astronaut bone and muscle health in microgravity is an ongoing concern for NASA. In May of 2014, NASA delivered the ForceShoe, designed by XSENS, to the International Space Station (ISS) to collect data for studying the loads, or force, placed on crew member bodies while exercising on the space station's Advanced Resistive Exercise Device (ARED) Credit: NASA
"We are eager to understand how joint forces may be different between exercise performed on the ground and in space, and force shoe technology might help us do this in future investigations," said Hanson.

Enhancing researchers' understanding of exercise form and the forces applied to the human body while using this unique spaceflight exercise hardware will help them recommend the best exercise regimens for safe and effective bone and muscle strength maintenance during spaceflight.

How will the investigation achieve this?

Researchers will ask two to four crew members to collect static load and dynamic exercise data while wearing the shoes, which look like high-tech sandals. During the static load test, crew members will be asked to set the ARED to provide specific loads in the same way they would set loads on a weightlifting machine at the gym. They will then lift the exercise bar and stand still on ARED while the shoes collect data. This simple and repetitive test is necessary to make sure the force measuring shoe works as well in microgravity as it does on Earth. Once the shoe is successfully demonstrated in space, researchers will use it as a tool to measure both human performance as well as the loads ARED is applying to the body during exercise. Dynamic exercise will include squats, deadlifts and bicep curls.

As crew members perform these exercises, the ForceShoe, which acts like an enhanced bathroom scale that measures loads applied downward as well as during front-to-back and side-to-side movements, will transmit data via Bluetooth technology to computers on the space station. Researchers on Earth will receive this data a couple of days later.

Andrea Hanson, Ph.D., and ISS Exercise Hardware Specialist, demonstrates the use of the ForceShoe on the Advanced Resistive Exercise Device. Credit: NASA

Initially, researchers will use these measures to validate the technology. The ultimate goal of using the technology; however, is to provide researchers with data they will use to calculate the force felt at specific joints such as the ankle, knee and hip. At the end of the evaluation, researchers will be able to determine whether or not they can use the tool for other Human Research Program research or for ongoing day-to-day operations on the space station and in future exploration missions.

"As we prepare for future missions to asteroids, Mars and beyond, we need to think about minimizing and miniaturizing equipment because spacecraft will be smaller," says Hanson. "The ForceShoe is a great example of the way we can shrink some of our research tools for future missions."

Hanson also adds that it is unknown what terrain crew members might face when they reach new planetary surfaces. By optimizing the effects of muscle and bone strength training and increasing the efficiency of exercise, devices like the ForceShoe will help properly train and strengthen in preparation for exploring these planetary surfaces after long periods of weightlessness. Lessons learned from performed during long duration missions in microgravity can be directly applied to populations here on Earth that are restricted from activity due to injury, aging, busy lifestyles, or confined work and living spaces. The force is certainly strong with this one.

Explore further: NASA study provides new findings on protecting astronauts' bones through diet and exercise

Related Stories

Second HI-SEAS Mars space analog study begins

March 31, 2014

A new space odyssey began tonight as the six crew members of the new Hawai'i Space Exploration and Analog Simulation (HI-SEAS) mission entered their remote habitat on the first night of a four-month-long journey.

Seatest underwater adventure

October 1, 2013

ESA astronauts Andreas Mogensen and Thomas Pesquet returned from Florida last week after taking part in Seatest – NASA's underwater testbed for working in space.

Recommended for you

A new neptune-size exoplanet

December 16, 2018

The remarkable exoplanet discoveries made by the Kepler and K2 missions have enabled astronomers to begin to piece together the history of the Earth and to understand how and why it differs from its diverse exoplanetary cousins. ...

Mars InSight lander seen in first images from space

December 14, 2018

On Nov. 26, NASA's InSight mission knew the spacecraft touched down within an 81-mile-long (130-kilometer-long) landing ellipse on Mars. Now, the team has pinpointed InSight's exact location using images from HiRISE, a powerful ...

Video: Enjoying the Geminids from above and below

December 14, 2018

On the night of December 13, into the morning of December 14, 2018, tune into the night sky for a dazzling display of fireballs. Thanks to the International Space Station, this sky show – the Geminids meteor shower—will ...

Hubble finds far-away planet vanishing at record speed

December 13, 2018

The speed and distance at which planets orbit their respective blazing stars can determine each planet's fate—whether the planet remains a longstanding part of its solar system or evaporates into the universe's dark graveyard ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.