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Hyperbolic homogeneous equations on the chalkboard in Professor Dinakar
Ramakrishnan's office at Caltech. Credit: Cynthia Eller

Cutting-edge mathematics today, at least to the uninitiated, often sounds
as if it bears no relation to the arithmetic we all learned in grade school.
What do topology and combinatorics and n-dimensional space have to do
with addition, subtraction, multiplication, and division? Yet there
remains within mathematics one vibrant field of study that makes
constant reference to basic arithmetic: number theory. Number
theory—the "queen of mathematics," according to the famous 19th
century mathematician Carl Friedrich Gauss—takes integers as its
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starting point. Begin counting 1, 2, 3, and you enter the domain of
number theory.

Number theorists are particularly interested in prime numbers (those
integers that cannot be divided by any number other than itself and 1)
and Diophantine equations. Diophantine equations are polynomial
equations (those with two or more variables) in which the coefficients
are all integers.

It is these equations that are the inspiration for a recent proof offered by
Dinakar Ramakrishnan, Caltech's Taussky-Todd-Lonergan Professor of
Mathematics and executive officer for mathematics, and his coauthor,
Mladen Dimitrov, formerly an Olga Taussky and John Todd Instructor in
Mathematics at Caltech and now professor of mathematics at the
University of Lille in France. This proof involves homogeneous
equations: equations in which all the terms have the same degree. For
example, the polynomial xy + z2 has degree 2, and x2yz + xy3 has degree
4.  If we take an equation like xy = z2, one solution for (x, y, z) would be
(1, 4, 2). Multiplying that solution by any rational number will give
infinitely many rational solutions, but this is a trivial way to get solutions
achieved simply by "scaling." These are not the type of answers
Ramakrishnan and Dimitrov were searching for.

What Ramakrishnan and Dimitrov showed is that a specific collection of
systems of homogeneous equations with six variables has only a finite
number of rational solutions (up to scaling). Usually people look for
integer solutions of Diophantine equations, but the first approach is to
find solutions in rational numbers—those that can be expressed as a
fraction of two integers.

Diophantus, after whom the Diophantine equations are named, is best
known for his Arithmetica, which Ramakrishnan describes as "a
collection of intriguing mathematical problems, some of them original to
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Diophantus, others an assemblage of earlier work, some of it possibly
going back to the Babylonians." Diophantus lived in the city of
Alexandria, in what is now Egypt, during the third century CE. What
makes the Arithmetica unusual is that it continues to serve as the basis
for some very interesting mathematics more than 1,700 years later.

Diophantus was interested primarily in positive integers. He was aware
of the existence of rational numbers, since he knew integers could divide
one another, but he seemed to regard negative numbers (which are also
rational numbers and can be integers) as absurd and unreal. Present-day
number theorists have no such discomfort with negative numbers, but
they continue to be as fascinated by integers as Diophantus was.
"Integers are very special," says Ramakrishnan. "They are kind of like
musical notes on a clavier. If you change a note even slightly, you'll hear
a dissonance. In a sense, integers can be thought of as the well-tempered
states of mathematics. They are quite beautiful."

Diophantus was especially interested in integer solutions for
homogeneous polynomial equations: those in which each term of the
equation has the same degree (for example, x7 + y7 = z7 or x2y3z = w6).
The classic example of a homogeneous polynomial equation is the
Pythagorean theorem—x2 + y2 = z2—which defines the hypotenuse, z,
the longest side of a right triangle, with respect to the perpendicular sides
x and y. As early as 1600 BCE, the ancient Babylonians knew that there
were many integer solutions to this equation (beginning with 32 + 42 =
52), though it was Pythagoras, a Greek mathematician living in the sixth
century BCE, who gave his name to the formula, and Euclid who two
centuries later proved that this equation has an infinite number of
positive integer solutions, known as "Pythagorean triples" (such as 3, 4,
5; 5, 12, 13; or 39, 80, 89).

In 1637, French mathematician Pierre de Fermat famously wrote in the
margin of Diophantus's Arithmetica that he had a "truly marvelous
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proof" showing that although there were an infinite number of positive
integer solutions for x2 + y2 = z2, there were no positive integer solutions
at all when the variables were raised to the power of three or higher (x3 +
y3 = z3; x4 + y4 = z4 ; . . . ; xn + yn = zn). Fermat did not provide the actual
proof; he claimed that the margin of Diophantus's book was too small to
contain it. Fermat's conjecture (it was not yet a proof, though Fermat
apparently believed he had one in his mind) remained unsolved until the
early 1990s, when British mathematician Andrew Wiles created a
complicated and unexpected proof that made use of previously unrelated
mathematical principles.

In geometric terms, Fermat's conjecture and Wiles's proof, with their
three variables, operate in three-dimensional space and can be described
as points on a curve on the projective plane, drawn with x, y, z
coordinates up to scaling. By moving to a greater number of variables,
Ramakrishnan and Dimitrov are interested in identifying points on so-
called hyperbolic surfaces. A hyperbolic surface is a negatively curved
space, like a saddle—as opposed to a positively curved space like a
sphere—in which the rules of Euclidean geometry no longer apply. A
simple example of a hyperbolic surface is given by the simultaneous
solution (where the values of the variables are held constant) of three
equations: x1

5 + y5 = z5; x2
5 + w5 = z5; and x3

5 + w5 = y5. In the 1980s,
German mathematician Gerd Faltings did pioneering work on the
mathematics of hyperbolic curves, work that inspired Ramakrishnan and
Dimitrov.

Ramakrishnan and Dimitrov's recent finding considers rational-number
solutions for several systems of homogeneous polynomial equations
describing hyperbolic surfaces. One solution is to set all the variables to
zero. This solution is considered trivial; but are there any nontrivial
solutions?

There are at least a few nontrivial solutions that Ramakrishnan and
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Dimitrov use as examples. Their challenge was to determine if there are
finitely many or infinitely many rational solutions. They
demonstrated—in a proof-by-contradiction that took nearly two years to
complete—that the hyperbolic case they consider has only a finite
number of solutions.

But, as Ramakrishnan remarks, there is no rest for number theorists,
because "even if we solve another bunch of equations, there are still
many more that are unsolved, enough for our descendants five hundred
years from now."

For Ramakrishnan, this is not a counsel of despair. He continues to find
mathematics exciting, especially the concept of the mathematical proof.
As he points out, "In other ancient civilizations in the Middle East or
India or China, they did some very complicated math, but it was more
algorithmic, more related to computer science in my opinion than to
philosophy. Whereas the Greeks emphasized proofs, rigorously
establishing mathematical truths. There's nothing vague about it."

Apart from the inherent joy of pushing number theory forward through
another generation, Ramakrishnan points out that this field has
interesting applications in both science and everyday life. "Quite often in
science, you are counting. Think of balancing chemical equations such as
wCH4 + xO2 —> yCO2 + zH2O, in which methane oxidizes to produce
carbon dioxide and water. This is a linear Diophantine equation."

Number theory also plays an important role in encryption. "Every time
one visits a website with an https:// address," says Ramakrishnan, "it is
likely that the website browser is using an encryption system that
validates the certificate for the remote server to which one is trying to
connect. The security keys that are exchanged point to a number
-theoretic solution. Most people prefer equations with simple solutions,
but in some situations, such as encryption, you actually want integer
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equations that are hard to solve without the key. This is where number
theory comes in."

Ramakrishnan and Dimitrov's paper, "Compact arithmetic quotients of
the complex 2-ball and a conjecture of Lang," is posted on the math
arXiv.

  More information: "Compact arithmetic quotients of the complex
2-ball and a conjecture of Lang." Mladen Dimitrov, Dinakar
Ramakrishnan. arXiv:1401.1628 [math.NT] arxiv.org/abs/1401.1628
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