

How the Heartbleed bug reveals a flaw in
online security

April 11 2014, by Robert Merkel

Does Heartbleed expose flaws in the way some security-critical software is
developed? Credit: Flickr/Kaleenxian, CC BY-NC-ND

The Heartbleed bug that's potentially exposed the personal and financial
data of millions of people stored online has also exposed a hole in the
way some security software is developed and used.

The bug is in an extremely widespread piece of software called
OpenSSL. OpenSSL allows programmers to write systems that send
sensitive data such as financial or medical information over the internet,
with confidence that anybody "listening in" will only get indecipherable
gibberish.

1/6

https://www.openssl.org/

It also provides a way to prove that a message came from a particular
organisation's computer, so that you can be confident you're sending
your credit card details to Amazon or Apple rather than a criminal.

How was OpenSSL developed?

OpenSSL is not the only tool that provides these facilities, but it is by far
the most common, due to its free availability and long history.

OpenSSL dates from the late 1990s, and like many other crucial pieces
of internet software, is developed by a loosely-organised global bunch of
hobbyists, students and volunteers.

It is made available as open source software for anyone to use for free
on very liberal terms. Most of the world's internet servers – and every
Android smartphone – use a great deal of software developed in this
manner, though many such developer teams include paid professionals
from companies who use the software.

The Heartbleed bug

On New Year's Eve 2011, German researcher and OpenSSL contributor
Robin Seggelmann added code implementing a new feature called
"heartbeats".

The idea was straightforward: if a connection between two computers
stays silent for too long, it is disconnected, so periodic "heartbeat"
messages can keep the connection going.

As well as a simple "I'm here", messages contain a arbitrary "payload"
which is sent back and forth, a little like this:

2/6

https://phys.org/tags/credit+card+details/
https://phys.org/tags/open+source+software/
https://github.com/openssl/openssl/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3
https://tools.ietf.org/html/rfc6520

Computer 1: "Hi, I'm still here, the payload is 5 characters long and is
'12345'."

Computer 2: "Hi, great, you're still there, and your payload was 5
characters long and was '12345'."

Unfortunately, Seggelmann's code didn't check that the payload was of
the indicated length, so a malicious request could request more data than
was in the payload:

Computer 1: "Hi, I'm still here, the payload is 50,000 characters long
and is '12345'."

Computer 2 would then send back a message with a payload of the
requested length, the first characters of which would be the 12345 sent.
The rest would be whatever happened to be in the computer's memory
next to the payload.

The exact contents sent back varied between systems and over time. But
as well as information such as user passwords or private data, it could
contain something called the private master key.

With access to this key, an "attacker" can electronically impersonate the
organisation who rightfully owns the key, and unscramble all the private
messages sent to that organisation – including old ones, if they've kept
the previously unreadable scrambled versions.

Criminals could, for instance, steal the key of a major bank and then
electronically impersonate it. It's a potential field day for spies, too.

Discovery and consequences

The buggy code was incorporated into a June 2012 release of OpenSSL

3/6

https://phys.org/tags/computer/

that was widely adopted, and there it stayed until discovered virtually
simultaneously by Google's security team, and Codenomicon, an internet
security company.

Before informing the public, they informed the OpenSSL developers,
who fixed the bug by adding the missing checks.

At this moment, there is no evidence that anybody has maliciously
exploited the bug but system administrators have acted both to prevent
exploitation, and reduce the consequences if it has already been.

The fix is simple. The task of getting it deployed to the millions of
systems using OpenSSL is not.

System administrators across the world have been furiously installing the
fix on millions of computers. They're also scrambling to generate new
master keys.

For most end users, the biggest nuisance will come when administrators
request password changes.

Most users have multiple internet accounts; many of these will be
affected by the Heartbleed bug and their administrators will request their
users to change passwords in case they have been stolen.

In addition, many embedded computers in devices such as home network
routers may be vulnerable, and updating these is a time-consuming
manual task.

Even if there hasn't been any malicious exploitation of the bug, the costs
of people's time will likely run into the hundreds of millions of dollars.

A tiny mistake but a major headache

4/6

http://www.codenomicon.com/
http://heartbleed.com/

Contrary to a variety of conspiracy theories, the simplest and most likely
explanation for the bug is an accidental mistake. Seggelmann denies
doing anything deliberately wrong.

Mistakes of the type that caused Heartbleed are have led to security
problems since the 1970s. OpenSSL is written in a programming
language called C, which also dates from the early 1970s. C is renowned
for its speed and flexibility, but the trade-off is that it places all
responsibility on programmers to avoid making precisely this kind of
mistake.

There are currently two broad streams of thought in the technical
community about how to reduce the likelihood of such mistakes:

1. use technical measures, such as alternative programming
languages, that make this type of error less likely

2. tighten up the process for making changes to OpenSSL, so that
they are subject to much more extensive expert scrutiny before
incorporation.

Dealing with risk

My view is that while both of these points have merit, underlying both is
that the Heartbleed bug represents a massive failure of risk analysis.

It's hard to be too critical of those of who volunteer to build such a
useful tool but OpenSSL's design prioritises performance over security,
which probably no longer makes sense.

But the bigger failure in risk analysis lies with the organisations who use
OpenSSL and other software like it. The development team, language
choices and development process of the OpenSSL project are laid bare,

5/6

http://www.smh.com.au/it-pro/security-it/man-who-introduced-serious-heartbleed-security-flaw-denies-he-inserted-it-deliberately-20140410-zqta1.html
http://www.howstuffworks.com/c.htm
http://blog.existentialize.com/diagnosis-of-the-openssl-heartbleed-bug.html
https://phys.org/tags/risk+analysis/

in public, for anyone who cares to find out.

The consequences of a serious security flaw in the project are equally
obvious. But a huge array of businesses, including very large IT
businesses depending on OpenSSL with the resources to act, did not take
any steps in advance to mitigate the losses.

They could have chosen to fund a replacement using more secure
technologies, and they could have chosen to fund better auditing and
testing of OpenSSL so that bugs such as this are caught before
deployment.

They didn't do either, so they – and now we – wear the consequences,
which likely far exceed the costs of mitigation.

And while you shake your head at the IT geeks, I leave you with a
question – how are you identifying and managing the risks that your own
organisation faces?

This story is published courtesy of The Conversation (under Creative
Commons-Attribution/No derivatives).

Provided by The Conversation

Citation: How the Heartbleed bug reveals a flaw in online security (2014, April 11) retrieved 20
April 2024 from https://phys.org/news/2014-04-heartbleed-bug-reveals-flaw-online.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://theconversation.edu.au/
https://phys.org/news/2014-04-heartbleed-bug-reveals-flaw-online.html
http://www.tcpdf.org

