

Parallel programming may not be so
daunting

March 24 2014, by Larry Hardesty

Credit: Thinkstock

Computer chips have stopped getting faster: The regular performance
improvements we've come to expect are now the result of chipmakers'
adding more cores, or processing units, to their chips, rather than
increasing their clock speed.

In theory, doubling the number of cores doubles the chip's efficiency,

1/4

but splitting up computations so that they run efficiently in parallel isn't
easy. On the other hand, say a trio of computer scientists from MIT,
Israel's Technion, and Microsoft Research, neither is it as hard as had
been feared.

Commercial software developers writing programs for multicore chips
frequently use so-called "lock-free" parallel algorithms, which are
relatively easy to generate from standard sequential code. In fact, in
many cases the conversion can be done automatically.

Yet lock-free algorithms don't come with very satisfying theoretical
guarantees: All they promise is that at least one core will make progress
on its computational task in a fixed span of time. But if they don't
exceed that standard, they squander all the additional computational
power that multiple cores provide.

In recent years, theoretical computer scientists have demonstrated
ingenious alternatives called "wait-free" algorithms, which guarantee that
all cores will make progress in a fixed span of time. But deriving them
from sequential code is extremely complicated, and commercial
developers have largely neglected them.

In a paper to be presented at the Association for Computing Machinery's
Annual Symposium on the Theory of Computing in May, Nir Shavit, a
professor in MIT's Department of Electrical Engineering and Computer
Science; his former student Dan Alistarh, who's now at Microsoft
Research; and Keren Censor-Hillel of the Technion demonstrate a new
analytic technique suggesting that, in a wide range of real-world cases,
lock-free algorithms actually give wait-free performance.

"In practice, programmers program as if everything is wait-free," Shavit
says. "This is a kind of mystery. What we are exposing in the paper is
this little-talked-about intuition that programmers have about how [chip]

2/4

schedulers work, that they are actually benevolent."

The researchers' key insight was that the chip's performance as a whole
could be characterized more simply than the performance of the
individual cores. That's because the allocation of different "threads," or
chunks of code executed in parallel, is symmetric. "It doesn't matter
whether thread 1 is in state A and thread 2 is in state B or if you just
swap the states around," says Alistarh, who contributed to the work while
at MIT. "What we noticed is that by coalescing symmetric states, you
can simplify this a lot."

In a real chip, the allocation of threads to cores is "a complex interplay
of latencies and scheduling policies," Alistarh says. In practice, however,
the decisions arrived at through that complex interplay end up looking a
lot like randomness. So the researchers modeled the scheduling of
threads as a process that has at least a little randomness in it: At any
time, there's some probability that a new thread will be initiated on any
given core.

The researchers found that even with a random scheduler, a wide range
of lock-free algorithms offered performance guarantees that were as
good as those offered by wait-free algorithms.

That analysis held, no matter how the probability of thread assignment
varied from core to core. But the researchers also performed a more
specific analysis, asking what would happen when multiple cores were
trying to write data to the same location in memory and one of them kept
getting there ahead of the others. That's the situation that results in a lock-
free algorithm's worst performance, when only one core is making
progress.

For that case, they considered a particular set of probabilities, in which
every core had the same chance of being assigned a thread at any given

3/4

time. "This is kind of a worst-case random scheduler," Alistarh says.
Even then, however, the number of cores that made progress never
dipped below the square root of the number of cores assigned threads,
which is still better than the minimum performance guarantee of lock-
free algorithms.

 More information: Paper: "Are Lock-Free Concurrent Algorithms
Practically Wait-Free?" arxiv.org/pdf/1311.3200v2

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Parallel programming may not be so daunting (2014, March 24) retrieved 3 May 2024
from https://phys.org/news/2014-03-parallel-daunting.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

https://phys.org/tags/performance/
http://arxiv.org/pdf/1311.3200v2
http://web.mit.edu/newsoffice/
https://phys.org/news/2014-03-parallel-daunting.html
http://www.tcpdf.org

