Turning graphite into diamond

March 28, 2014 by Manuel Gnida
SLAC researchers have found a new way to transform graphite -- a pure form of carbon most familiar as the lead in pencils -- into a diamond-like film. Credit: Fabricio Sousa/SLAC

(Phys.org) —A research team led by SLAC scientists has uncovered a potential new route to produce thin diamond films for a variety of industrial applications, from cutting tools to electronic devices to electrochemical sensors.

The scientists added a few layers of graphene – one-atom thick sheets of graphite – to a metal support and exposed the topmost layer to hydrogen. To their surprise, the reaction at the surface set off a domino effect that altered the structure of all the graphene layers from graphite-like to diamond-like.

"We provide the first experimental evidence that hydrogenation can induce such a transition in graphene," says Sarp Kaya, researcher at the SUNCAT Center for Interface Science and Catalysis and corresponding author of the recent study.

From Pencil Lead to Diamond

Graphite and diamond are two forms of the same chemical element, carbon. Yet, their properties could not be any more different. In graphite, are arranged in planar sheets that can easily glide against each other. This structure makes the material very soft and it can be used in products such as pencil lead.

In diamond, on the other hand, the carbon atoms are strongly bonded in all directions; thus diamond is extremely hard. Besides mechanical strength, its extraordinary electrical, optical and chemical properties contribute to diamond's great value for .

This illustration shows four layers of transformed graphene (single sheets of graphite, with carbon atoms represented as black spheres) on a platinum surface (blue spheres). The addition of hydrogen atoms (green spheres) to the top layer has set off a domino effect that transformed this graphite-like material into a diamond-like film. The film is stabilized by bonds between the platinum substrate and the bottom-most carbon layer. Credit: Sarp Kaya and Frank Abild-Pedersen/SUNCAT

Scientists want to understand and control the structural transition between different carbon forms in order to selectively transform one into another. One way to turn graphite into diamond is by applying pressure. However, since graphite is the most stable form of carbon under normal conditions, it takes approximately 150,000 times the atmospheric pressure at the Earth's surface to do so.

Now, an alternative way that works on the nanoscale is within grasp. "Our study shows that hydrogenation of graphene could be a new route to synthesize ultrathin diamond-like films without applying pressure," Kaya says.

Domino Effect

For their experiments, the researchers loaded a platinum support with up to four sheets of graphene and added hydrogen to the topmost layer. With the help of intense X-rays from SLAC's Stanford Synchrotron Radiation Lightsource (SSRL, Beam Line 13-2) and additional theoretical calculations performed by SUNCAT researcher Frank Abild-Pedersen, the team then determined how hydrogen impacted the layered structure.

They found that hydrogen binding initiated a domino effect, with structural changes propagating from the sample's surface through all the carbon layers underneath, turning the initial graphite-like structure of planar carbon sheets into an arrangement of carbon atoms that resembles diamond.

The discovery was unexpected. The original goal of the experiment was to see if adding hydrogen could alter graphene's properties in a way that would make it useable in transistors, the fundamental building block of . Instead, the scientists discovered that hydrogen binding resulted in the formation of chemical bonds between graphene and the platinum substrate.

It turns out that these bonds are crucial for the . "For this process to be stable, the platinum substrate needs to bond to the carbon layer closest to it," Kaya explains. "Platinum's ability to form these bonds determines the overall stability of the diamond-like film."

Future research will explore the full potential of hydrogenated few-layer graphene for applications in the material sciences. It will be particularly interesting to determine if diamond-like films can be grown on other metal substrates, using of various thicknesses.

Explore further: 'Diamane': Diamond film possible without the pressure

More information: Srivats Rajasekaran, Frank Abild-Pedersen, Hirohito Ogasawara, Anders Nilsson, and Sarp Kaya. "Interlayer Carbon Bond Formation Induced by Hydrogen Adsorption in Few-Layer Supported Graphene" Phys. Rev. Lett. 111, 085503 – Published 20 August 2013. journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.085503

Related Stories

Team finds potential way to make graphene superconducting

March 20, 2014

Scientists at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have discovered a potential way to make graphene – a single layer of carbon atoms with great promise for future electronics ...

Diamonds, nanotubes find common ground in graphene

May 28, 2013

What may be the ultimate heat sink is only possible because of yet another astounding capability of graphene. The one-atom-thick form of carbon can act as a go-between that allows vertically aligned carbon nanotubes to grow ...

Proposed graphene cardboard has highly tunable properties

March 21, 2014

(Phys.org) —Carbon nanomaterials come in many different forms, such as diamond, aerogels, graphene, and soot. Sometimes carbon nanomaterials are even used as building blocks for making more complex nanomaterials. One recent ...

A new form of carbon: Grossly warped 'nanographene'

July 15, 2013

Chemists at Boston College and Nagoya University in Japan have synthesized the first example of a new form of carbon, the team reports in the most recent online edition of the journal Nature Chemistry.

Recommended for you

Graphene's sleeping superconductivity awakens

January 19, 2017

Researchers have found a way to trigger the innate, but previously hidden, ability of graphene to act as a superconductor - meaning that it can be made to carry an electrical current with zero resistance.

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Mar 28, 2014
1 / 5 (2) Mar 30, 2014
Now the physics that cause this transformation.. interesting. I've often thought that if you put graphite inside of molten metal and then freeze - melt a few times using natural pressures of expansion and contraction, would provide enough to have the same effect?
1 / 5 (2) Apr 01, 2014
This reaction also works the other way. Nanodiamonds with heat applied turn into nano-onions, and if you peel the layers you end up with graphene. In fact, manufacturing nanodiamonds and then transforming them may be a cheap method for making graphene.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.