Proposed graphene cardboard has highly tunable properties

March 21, 2014 by Lisa Zyga, feature

Model of a graphene cardboard box. Credit: Pekka Koskinen
( —Carbon nanomaterials come in many different forms, such as diamond, aerogels, graphene, and soot. Sometimes carbon nanomaterials are even used as building blocks for making more complex nanomaterials. One recent example of this is nanotube forests that are grown to provide the raw material to make nanotube yarns that are woven into custom-made artificial muscles. In short, carbon nanomaterials are a versatile group that seem to provide endless opportunity for innovation.

In a new paper, physicist Pekka Koskinen at the University of Jyväskylä in Finland has proposed and modeled a new composite carbon nanostructure that consists of a rippled sandwiched between two flat graphene sheets, resulting in "graphene cardboard." The work is published in a recent issue of Applied Physics Letters.

"If realized experimentally, the structure could be used as a general-purpose platform at nanoscale, imitating the use of normal cardboard at macroscale," Koskinen told "Cardboard could be also used in the same applications as other porous carbon materials, such as in batteries or in filtering. However, more suitable would be applications that make use of the tunable mechanical properties. With scalable fabrication techniques, the tunability could perhaps even be transferred to macroscale objects made of graphene cardboard."

The idea of graphene cardboard builds on recent experiments that demonstrated periodic rippling in graphene, similar to the rippling of satin sheets. However, experimentally realizing graphene cardboard is likely to be more difficult because the rippled sheet must be sandwiched by outer sheets. The cardboard would be held together by covalent bonds, which could be introduced by either electron irradiation or chemical functionalization.

Although fabricating graphene cardboard may be extremely difficult, in the current paper Koskinen's modeling of the nanocomposite material provides insight into its structural and mechanical characteristics. He found that increasing the shear stress on the cardboard material reveals four phases, starting with flat, to sine-type ripples, to mushroom-type ripples, to collapsed ripples.

Graphene cardboard phase diagram. Similar to ripples on the macroscale, the ripples in graphene cardboard take on different shapes in response to an applied strain. Credit: Pekka Koskinen, ©2014 AIP Publishing LLC

Perhaps more interestingly for practical purposes, Koskinen's modeling reveals that graphene cardboard's mechanical properties are highly tunable by modifying the structural deformations, such as compression, shear, and tension. For example, the material's elasticity can be tuned by orders of magnitude by controlling the strain.

For another example, controlling the strain can also theoretically tune the Poisson ratio over a very wide range (-0.5 to 10). The Poisson ratio measures how much a compressed material expands perpendicular to the direction of compression, and is a useful metric for developing new materials. The modeling here shows that the Poisson ratio of graphene cardboard decreases as the strain increases.

"For me the most fascinating result was that even such a simple and natural structure could possibly show negative Poisson ratios," Koskinen said.

Koskinen hopes that these predictions will serve as a motivation for experimentally realizing cardboard. Because the results are general, they can also serve as a starting point for investigating other layered materials with sandwiched rippled structures.

"There are many other atomically thin and flimsy two-dimensional materials, and thus plenty of room to search for novel with customizable properties," Koskinen said.

Explore further: Researchers find less is more with adding graphene to nanofibers

More information: Pekka Koskinen. "Graphene cardboard: From ripples to tunable metamaterial." Applied Physics Letters. DOI: 10.1063/1.4868125

Related Stories

Flexible, semi-transparent ultrathin solar cells

March 9, 2014

A lot of research has been done on graphene recently—carbon flakes, consisting of only one layer of atoms. As it turns out, there are other materials too which exhibit remarkable properties if they are arranged in a single ...

Team finds potential way to make graphene superconducting

March 20, 2014

Scientists at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have discovered a potential way to make graphene – a single layer of carbon atoms with great promise for future electronics ...

Team develops chemical solution for graphene challenges

February 24, 2014

There's no question that graphene is a really cool material. It's the thinnest substance ever made, a one-atom-thick sheet of carbon atoms arranged in a hexagonal honeycomb pattern. Although it's as stiff as diamond and hundreds ...

The mechanism of caesium intercalation of graphene

February 21, 2014

Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and molecular species ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

Researchers make coldest quantum gas of molecules

February 21, 2019

JILA researchers have made a long-lived, record-cold gas of molecules that follow the wave patterns of quantum mechanics instead of the strictly particle nature of ordinary classical physics. The creation of this gas boosts ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 21, 2014
You freaking lost me at "graphene cardboard" this is not graphene cardboard.
This is corrugated graphene!

The "Corrugated" in "Corrugated Cardboard" refers to its shape and alignment (form)
The "Cardboard" in "Corrugated Cardboard" refers to the material its made from

So freaking dumb, I couldn't take anything else the article states seriously.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.