Rewriting the text books: Scientists crack open 'black box' of development

February 13, 2014
The mouse embryo's own stem cells organize themselves into a rosette-like arrangement as a pre-requisite for laying the foundations for the body when the embryo would implant into the uterus. Credit: Magdalena Zernicka-Goetz and Ivan Bedzhov

We know much about how embryos develop, but one key stage – implantation – has remained a mystery. Now, scientists from Cambridge have discovered a way to study and film this 'black box' of development. Their results – which will lead to the rewriting of biology text books worldwide – are published in the journal Cell.

Embryo in mammals occurs in two phases. During the first phase, pre-implantation, the embryo is a small, free-floating ball of called a blastocyst. In the second, post-implantation, phase the blastocyst embeds itself in the mother's uterus.

While blastocysts can be grown and studied outside the body, the same has not been true from implantation. And because are so closely connected to their mothers, implantation has also been difficult to study in the womb.

According to study author Professor Magdalena Zernicka-Goetz of the University of Cambridge: "We know a lot about pre-implantation, but what happens after implantation – and particularly the moment of implantation – is an enigma."

Scientists are interested in studying implantation because the embryo undergoes huge changes in such a short space of time.

The mouse embryo's own stem cells organize themselves into a rosette-like arrangement as a pre-requisite for laying the foundations for the body when the embryo would implant into the uterus. Credit: Magdalena Zernicka-Goetz and Ivan Bedzhov

"During these two days, it goes from a relatively simple ball to a much larger, more complex cup-like structure, but exactly how that happens was a mystery – a black box of development. That is why we needed to develop a method that would allow us to culture and study embryos during implantation," she explained.

Working with mouse cells, Professor Zernicka-Goetz and her colleague Dr Ivan Bedzhov succeeded in creating the right conditions outside the womb to study the implantation process.

To be able to support development, they created a system comprising a gel and medium that, as well as having the right chemical and biological properties, was of similar elasticity to uterine tissue. Crucially, this gel was transparent to optical light, allowing then to film the embryo during implantation.

This new method revealed that on its way from ball to cup, the blastocyst becomes a 'rosette' of wedge-shaped cells, a structure never before seen by scientists.

The video will load shortly
The mouse embryo's own stem cells organize themselves into a rosette-like arrangement as a pre-requisite for laying the foundations for the body when the embryo would implant into the uterus. Credit: Magdalena Zernicka-Goetz and Ivan Bedzhov.

"It's a beautiful structure. This rosette is what a mouse looks like on the 4th day of its life, and most likely what we look like on the 7th day of ours, and it's fascinating how beautiful we are then, and how these small cells organise so perfectly to allow us to develop."

As well as answering a fundamental question in developmental biology, the new method will allow scientists to study embryo growth and development at implantation for the first time, which could help improve the success of IVF, and extend our knowledge of stem cells, which could advance their use in regenerative medicine.

The findings also mean text books will need rewriting. "The text books make an educated guess of what happened during this part of development, but we now know that what I learned and what I teach my students about this was totally wrong," said Professor Zernicka-Goetz.

Explore further: The 'entrance exam' that is key to a successful pregnancy

More information: Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation, Ivan Bedzhov and Magdalena Zernicka-Goetz, Cell (2014), dx.doi.org/10.1016/j.cell.2014.01.023

Related Stories

New method increases supply of embryonic stem cells

January 27, 2014

A new method allows for large-scale generation of human embryonic stem cells of high clinical quality. It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward ...

New tool for selecting embryos in fertility treatments

January 21, 2013

A team of researchers from the Universitat Politècnica de València and specialists from the Hospital Universitari i Politècnic La Fe have developed a new tool, a mathematical model to be exact, to help in the selection ...

Recommended for you

Lab charts the anatomy of three molecular channels

January 23, 2017

Using a state-of-the-art imaging technology in which molecules are deep frozen, scientists in Roderick MacKinnon's lab at Rockefeller University have reconstructed in unprecedented detail the three-dimensional architecture ...

New steps in the meiosis chromosome dance

January 23, 2017

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that's how sperm and eggs are made. And when meiosis doesn't work properly, it can lead to ...

Research describes missing step in how cells move their cargo

January 23, 2017

Every time a hormone is released from a cell, every time a neurotransmitter leaps across a synapse to relay a message from one neuron to another, the cell must undergo exocytosis. This is the process responsible for transporting ...

Immune defense without collateral damage

January 23, 2017

Researchers from the University of Basel in Switzerland have clarified the role of the enzyme MPO. In fighting infections, this enzyme, which gives pus its greenish color, produces a highly aggressive acid that can kill pathogens ...

Provocative prions may protect yeast cells from stress

January 23, 2017

Prions have a notorious reputation. They cause neurodegenerative disease, namely mad cow/Creutzfeld-Jakob disease. And the way these protein particles propagate—getting other proteins to join the pile—can seem insidious.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.