Bottom-up insight into crowd dynamics

February 7, 2014
Bottom-up insight into crowd dynamics

Stampedes unfortunately occur on too regular a basis. Previously, physicists developed numerous models of crowd evacuation dynamics. Their analyses focused on disasters such as the yearly Muslim Hajj or of the Love Parade disaster in Germany in 2010. Unfortunately, the casualties at these events may have been linked to the limitations of the crowd dynamics models used at the time. Now, a new study outlines a procedure for quantitatively comparing different crowd models, which also helps to compare these models with real-world data. In a paper published in European Physical Journal B, Vaisagh Viswanathan, a PhD student from Nanyang Technological University in Singapore, and colleagues have demonstrated that these crowd evacuation dynamics models are a viable decision-making tool in safety preparation and planning concerning real-world human crowds.

The trouble with such models, however, is that they rely on real-world data of crowds that is limited and incomplete. Often only top-down, macroscopic scale measurements of data such as flow, density, and average speed are used. It is not clear whether these metrics can validate the modelled at the individual level.

Instead of using data that is so difficult to source, Viswanthan and colleagues adopted a quantitative study comparing the simulated congestion flow rates, among other things, of three so-called bottom-up models. These focus on the individual behaviour of school children evacuating their classroom during the May 2008 Sichuan Earthquake.

They found that a referred to as the social force model—based on the idea that pedestrians move in response to fictitious attractive or repulsive social forces—best matches the real-world data showing how pupils exit their classrooms.

They also identified a new macroscopic metric, 'the zoned evacuation time', as the one observable parameter that can best discriminate between these models, and also between models and real-world data.

Explore further: Computer models that predict crowd behaviour could be used to prevent the spread of infections at mass gatherings

More information: V. Viswanthan et al. (2014), Quantitative Comparison Between Crowd Models for Evacuation Planning and Evaluation, European Physical Journal B, DOI: 10.1140/epjb/e2014-40699-x

Related Stories

Crowd dynamics in the spotlight after Duisburg disaster

July 29, 2010

(PhysOrg.com) -- The Love Parade in Duisburg in western Germany on 24th July was supposed to be a night of music and celebration for the estimated 1.4 million revelers, but it became a catastrophe, with 21 dead and over 300 ...

Hunting for gaps

April 19, 2011

(PhysOrg.com) -- Researchers have developed a new model for the behavior of pedestrians and crowds. It can help to understand and prevent tragic crowd disasters, to develop better architectural designs and new navigation ...

Deciphering the movement of pedestrians in a crowd

April 13, 2010

(PhysOrg.com) -- How do pedestrians move in the street? How do they interact? French researchers from the Université Toulouse, in partnership with the Swiss Federal Institute of Technology, Zurich, have carried out ...

Recommended for you

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.