Two-proton bit controlled by a single copper atom

January 16, 2014
Two protons (red) in a porphycene molecule deposited onto the surface of a perfect copper crystal (brown) can change their positions at nitrogen atoms (blue) depending on the position of a single copper atom (yellow). Credit: L. Grill / University of Graz

Just a single foreign atom located in the vicinity of a molecule can change spatial arrangement of its atoms. In a spectacular experiment, an international team of researchers was able to change positions of the nuclei of hydrogen atoms in a porphycene molecule by placing it in proximity to a single copper atom.

A subatomic bit formed by two tunnelling inside a simple organic molecule can be switched by approaching a single to the molecule. A spectacular experiment to demonstrate the phenomenon was carried out by a team of researchers from the Fritz-Haber-Institute of the Max-Planck-Gesellschaft (FHI) in Berlin, the University of Liverpool (UL) and the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw. The experiment was reported in a paper published in Nature Chemistry, one of the most prestigious chemical journals.

 In the study the researchers made use of specific properties of the porphycene molecule. Porphycene (C20H14N4) is a porphyrin derivative. Chemical compounds belonging to this group occur naturally. They are found, e.g., in human blood, where they are involved in reactions related to oxygen transport. Their molecules have a form of planar carbon rings with hydrogen atoms outside and four inside, located in the corners of a tetragon.

 In the centre of a porphycene molecule, in an empty space surrounded by nitrogen atoms, there are two protons (i.e., nuclei of ) that can move between the nitrogens. It is interesting that both protons are always displaced together. The research carried out for over a decade by Prof. Jacek Waluk's team (IPC PAS) suggests that the movement of protons is not simply a displacement in space. The protons change their positions due to quantum tunnelling effect: making use of the uncertainty principle they just disappear at one place and reappear in another.

 In the Berlin FHI laboratory the porphycene molecules provided by Prof. Waluk's team were deposited individually onto the surface of a perfect copper crystal. The job was not easy and required development of appropriate techniques – without them, porphycene molecules tended to form groups (aggregates).

The subsequent step involved experiments under high vacuum and at very low temperature (5 K, which means five degree above the absolute zero). A single porphycene molecule laying on the copper substrate was observed with a scanning tunnelling microscope. The instrument allowed for recording changes in electron density of the molecule, and thus for monitoring changes of its shape. The images obtained with this technique revealed current positions of both protons. Therefore the researchers were able to observe the movement of atoms inside the molecule in the course of a chemical reaction.

 "We were pretty much surprised to find that after depositing on the copper substrate, hydrogen ions in porphycene molecule formed a configuration that was never observed so far, in spite of many, many years of research on this compound. Instead of being located in opposite corners of the tetragon formed by nitrogen atoms, both protons took positions next to each other. Quite surprisingly we found a new porphycene tautomer," says Prof. Waluk.

A subatomic bit was formed from a porphycene, a chemical compound studied for years at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, Poland. Sylwester Gawinkowski, a PhD student, at the experimental setup used to study hydrogen tunelling in porphycene. Credit: Source: IPC PAS, Grzegorz

Using a tip of the scanning tunnelling microscope, a single copper atom was moved closer to the porphycene molecule, from different sides. It turned out that depending on the position of the copper atom, both protons in porphycene, moving between the nitrogen atoms, were located once on one side, and then on the other side of the molecule. Thus, the porphycene molecule acted as a binary switch, controlled with only a single copper atom. A change in position of the copper atom by less than ten-billionth of a meter was sufficient to initiate the transition between the states.

The research carried out by the team from the FHI, the UL and the IPC PAS proves that the vicinity of a molecule can substantially affect its physical and chemical properties. The results of the study show that, under certain conditions, the environment of molecules should be controlled with atomic precision. On the other hand, the observed sensitivity to changes in the environment opens the way for development of methods for regulation of processes occurring in single .

 "It seems likely that the molecule's sensitivity to its vicinity found by us is a common phenomenon in nature. The phenomenon can be exploited, for instance, in designing nanomachines processing information on a single-molecule level", sums up Prof. Waluk.

Explore further: Organic chemistry: Carbon dioxide tamed

More information: "Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby." Takashi Kumagai, Felix Hanke, Sylwester Gawinkowski, John Sharp, Konstantinos Kotsis, Jacek Waluk, Mats Persson & Leonhard Grill. Nature Chemistry 6, 41-46 DOI: 10.1038/nchem.1804: 1 December 2013

Related Stories

Organic chemistry: Carbon dioxide tamed

January 15, 2014

Carbon dioxide has become notorious as a troublesome greenhouse gas produced by burning fossil fuels. Now, this gas could also offer a cheap, abundant and nontoxic source of carbon for the chemical reactions that synthesize ...

Electrical control of single atom magnets

December 8, 2013

The energy needed to change the magnetic orientation of a single atom – which determines its magnetic stability and therefore its usefulness in a variety of future device applications – can be modified by varying the ...

Molecular motors: Power much less than expected?

August 28, 2013

An innovative measurement method was used at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw for estimating power generated by motors of single molecule in size, comprising a few dozens of ...

Building bridges between nanowires

September 20, 2013

Place a layer of gold only a few atoms high on a surface bed of germanium, apply heat to it, and wires will form of themselves. Gold-induced wires is what Mocking prefers to call them. Not 'gold wires', as the wires are not ...

Recommended for you

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.