Streamflow alteration impacts fish diversity in local rivers

January 16, 2014

A new USGS study quantifies change in fish diversity in response to streamflow alteration in the Tennessee River basin.

The USGS study highlights the importance of the timing, magnitude, and variability of low streamflows and the frequency and magnitude of high streamflows as key characteristics critical to assessing how change in response to streamflow alteration. This study was completed using fish community data collected by the Tennessee Valley Authority, and predictions of streamflow characteristics at more than 600 locations.

The Tennessee River basin is one of the richest areas of aquatic diversity in the country, if not the world. However, expanding urban development, more than 600 privately held small dams on medium to small streams, and withdrawal of more than 700 million gallons of water each day threaten this diversity. Understanding the effect of streamflow alteration on aquatic ecology is increasingly important as change in land use and human population are projected.

One of the examples from the study shows that as maximum October streamflow deviates outside reference conditions by approximately 6 cubic feet per second per square mile, fish diversity may decline by almost nine species in the Blue Ridge ecoregion of eastern Tennessee and western North Carolina. Results such as this were identified across the Blue Ridge, Ridge and Valley, and Interior Plateau ecoregions for 11 categories of fish and will help resource managers identify when streamflow alteration may result in too much ecological degradation.

"Managing river flows to meet the needs of our growing communities and economies will become increasingly challenging in the future", said Sally Palmer, director of science for The Nature Conservancy in Tennessee. "Maintaining our rivers to support an abundance of natural wildlife, including our native , is an important goal as well. Studies like these give us better information to make management decisions which more effectively balance all the demands placed on our river resources."

The National Park Service, responsible for the protection and management of Big South Fork National River and Recreation Area and the Obed Wild and Scenic River in Tennessee, has a need to assess potential impacts to the resources they are charged with protecting. "This research enhances our ability to respond to current development pressures and serves as the foundation to develop a decision support tool to address future water resource issues" said Jeff Hughes, hydrologist with the NPS.

Explore further: Study: Columbia River glaciers, streamflow changes

More information: onlinelibrary.wiley.com/doi/10.1002/eco.1460/pdf

Related Stories

Study: Columbia River glaciers, streamflow changes

January 16, 2014

(Phys.org) —The Columbia River is perhaps the most intricate, complex river system in North America. Its diverse landscape crosses international borders and runs through subarctic, desert and sea-level ecosystems. Surrounding ...

How does groundwater pumping affect streamflow?

November 16, 2012

Groundwater provides drinking water for millions of Americans and is the primary source of water to irrigate cropland in many of the nations most productive agricultural settings. Although the benefits of groundwater development ...

Climate change threatens freshwater fish

January 10, 2014

(Phys.org) —New research has revealed that Western Australia's drying climate will impact fish migrations, putting further pressure on a number of native freshwater fish species.

Recommended for you

Multinationals act on ocean-clogging plastics

January 16, 2017

Forty of the world's biggest companies assembled in Davos agreed on Monday to come up with cleaner ways to make and consume plastic as waste threatens the global eco-system, especially in oceans.

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.