How dust changed the face of the Earth


In spring 2010, the research icebreaker Polarstern returned from the South Pacific with a scientific treasure - ocean sediments from a previously almost unexplored part of the South Polar Sea. What looks like an inconspicuous sample of mud to a layman is, to geological history researchers, a valuable archive from which they can reconstruct the climatic history of the polar areas over many years of analysis. This, in turn, is of fundamental importance for understanding global climatic development. With the help of the unique sediment cores from the Southern Ocean, it is now possible to provide complete evidence of how dust has had a major influence on the natural exchange between cold and warm periods in the southern hemisphere. An international research team under the management of the Alfred Wegener Institute in Bremerhaven was able to prove that dust infiltrations there were 2 to 3 times higher during all the ice ages in the last million years than in the warm phases in climatic history.

"High large-area dust supply can have an effect on the climate for two major reasons", explained Dr. Frank Lamy, geoscientist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, about the findings. "Trace substances such as iron, which are essential for life, can be incorporated into the ocean through dust. This stimulates biological production and increases the sea's capacity to bind carbon. The result is that the greenhouse gas carbon dioxide is taken out of the atmosphere. In the atmosphere itself, dust reflects the sun's radiation and purely due to this it reduces the heat input into the Earth's system. Both effects lead to the fact that the Earth cools down." Lamy is the main author of the study which will be published in the renowned Science journal on 24th January 2014. Other participants included geochemist Gisela Winckler from the US Lamont-Doherty Earth Observatory and the Bremen Centre for Marine Environmental Sciences MARUM.

The influence of dust supply on the climate changes between ice ages and has long been suspected. Climatic researchers always found particularly high dust content containing iron when the earth was going through an ice age, both in Antarctic ice cores and in sediment cores from the Atlantic part of the Southern Ocean. However, up to now there was no data available for the Pacific section, which covers 50% of the Southern Ocean. "We can now close this central gap" is how Lamy underlines the importance of the new study. "The result is that we are now finding the same patterns in the South Pacific that we found in cores from the South Atlantic and the Antarctic ice. Therefore, the increased dust input was a phenomenon affecting the southern hemisphere during colder periods. This means that they now have to be considered differently when assessing the complex mechanisms which control natural climate changes."

What sounds almost incidental in Lamy's words is something of considerable relevance for research. This is because up to now many scientists were convinced that dust supply to the Pacific area could not have been higher during the ice ages than during warmer periods of the Earth's climate history. Where could larger dust quantities in this area of the Earth's oceans come from? Up to now, South Patagonia was suspected as a geological dust source since it is the only landmass in the Southern Ocean, intruding into it like a huge finger. However, since the wind predominating in this part of the world comes from the West, any dust particles in the air originating from South America mostly drift towards the Atlantic. For this reason, data from the South Pacific has been on scientists' wishlists for a long time.

However, the Pacific section of the Southern Ocean has remained something of a "terra incognita" for researchers despite modern technology. It is considered to be one of the most remote parts of the world's oceans. "The region is influenced by extreme storms and swells in which wave heights of 10 m or more are not uncommon. The area is also complicated from logistic point of view due to the huge distance between larger harbours" is how AWI scientist Dr. Rainer Gersonde, co-author and at the time leader of the Polarstern expedition, explains the extraordinary challenges faced by the research voyage. The Polarstern made a voyage of 10,000 nautical miles or 18,500 km through this particularly inhospitable part of the Antarctic Ocean in order to obtain high quality and sufficiently long sediment cores.

The question is, however, where did the historic dust freight towards the South Pacific come from, and why did the phases of increased input take place at all? Frank Lamy believes that one of the causes is the relocation or extension of the exceptionally strong wind belts prevalent in this region towards the Equator. The entire Southern Ocean is notorious amongst sailors for its powerful westerly winds - the "Roaring Forties" and the "Furious Fifties". It is considered to be one of the windiest regions in the world. The scientists' theory is that a relocation or extension of this powerful westerly wind belt towards the North could have caused the extended dry areas on the Australian continent to be influenced by stronger wind erosion. The result was higher dust infiltration into the Pacific Ocean - with the consequences described above. On top of this, New Zealand was an additional dust source. The extended glaciation of the mountains there during the ice age provided considerable quantities of fine-grained material which was then blown far out into the South Pacific by the winds.

"Our investigations have now proved without a doubt that colder periods in the southern hemisphere over a period of 1 million years always and almost everywhere coincided, , with lower carbon dioxide content in the atmosphere and higher dust supply from the air. The of the Earth was, therefore, written in ."

Explore further

New research sheds light on history of polar current

More information: "Increased Dust Deposition in the Pacific Southern Ocean During Glacial Periods" F. Lamy et al., Science, 24 January 2014 DOI: 10.1126/science.1245424
Journal information: Science

Citation: How dust changed the face of the Earth (2014, January 25) retrieved 19 September 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Jan 25, 2014
Suppose the dust came from space? Our system does orbit the galactic center. It may do so along with many members of our local group which is itself part of the Sagittarius Dwarf Galaxy of which we are also a member. Our home Galaxy, the aforementioned Sagittarius Dwarf Galaxy is being slowly absorbed by the Milky Way over billions of years. Currents of stars within our dwarf galaxy probably have their own orbits too. Point is, we periodically have these glaciations, so maybe we periodically go thru large clouds of dust because of our various orbital motions. These large clouds probably take fifteen thousand years to traverse, so we get colder when we are dusted, and warmer when we are not.. Proof would be layers of ancient dust on asteroids in proportion to their gravities. Planetary bodies would be more difficult to read unless areas unaffected by wind were studied., but would have a lot more dust as are in larger gravity wells.

Jan 25, 2014
"...along with many members of our local group which is itself part of the Sagittarius Dwarf Galaxy of which we are also a member. Our home Galaxy, the aforementioned Sagittarius Dwarf Galaxy is being slowly absorbed by the Milky Way over billions of years."

You appear confused on a couple of points here. The Sun is a member of the Milky Way galaxy(MWG). It orbits in the galactic plane of the disk. The Sagittarius Dwarf (Spheroidal) Galaxy is a much smaller galaxy, orbiting inclined to the disk of the MWG, leaving a trail of stars, gas and globular clusters spread along much of its orbit:


The Local Group is a small collection of nearby galaxies that includes both our home galaxy(the MWG) and the Sagittarius Dwarf Spheroidal Galaxy:


Jan 25, 2014
Interplanetary dust is always entering the atmosphere but much of the cosmic dust is dispersed by the solar wind before entering the system.

Jan 25, 2014
More dust, more cooling. But not more cooling, more dust? Not the runaway positive feedback the alarmists are always terrorizing us with.

Jan 25, 2014
Orti you appear to have trouble with comprehension. The authors of the study have not commented either way, at least not explicitly in this article, but it would seem from their comments that it can go both ways. This IS a positive feedback effect. Does that help with your comprehension issues?

The important take away, if you have an interest in global warming, is that reduced carbon dioxide content in the atmosphere always coincides with cooler global temperatures. That would also suggest that increased carbon dioxide content in the atmosphere will always coincide with warmer global temperatures.

I'm sorry to hear you're terrorized, but perhaps you can use some of that energy towards helping find ways to mitigate the expected results,instead of steadfastly denying what the science is telling us is happening.

Jan 25, 2014
Greenhouse Yada Yada.


Freeman Dyson to wife after viewing algore's climate change movie: "The polar bears will be fine"

Jan 26, 2014
I suspect you know how weak your comments are, but in case you didn't:


Local weather over a short period, even record setting weather, has next to nothing to do with worldwide climate trends.

Freeman Dyson to wife after viewing algore's climate change movie: "The polar bears will be fine"

Mr. Dyson is a hell of a bright guy, but he is one person and not a climate scientist, most of whom (by a large margin) have come to the conclusion that he is wrong.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more