Study shows airborne black carbon soot much worse than thought in China and India

January 28, 2014 by Bob Yirka, report
Study shows airborne black carbon soot much worse than thought in China and India
Black carbon Emissons, Gigagrams. Credit: (From T. Bond 2007)

( —A team made up of researchers from France and China has developed a new model for describing the amount of black carbon soot pollution in the air. In their paper published in Proceedings of the National Academy of Sciences, the team describes how they used new data to allow for better describing more localized soot pollution levels and found that some parts of India and China have far more soot in the air (up to two or three times more in some areas) than other models have suggested.

Airborne black carbon is in essence, the charred remains of fossil fuels that didn't fully burn due to insufficient oxygen—it's little black particles floating in the air. In addition to being unsightly, it also poses a health hazard for those who breathe it in. Up till now, most reports on soot levels have been nationally based—levels of soot have been measured in the air in various parts of a country and then averaged together to give a single number for a particular country. The problem with this approach, of course, is that it fails to account for regional differences. Those living downwind from a coal plant, for example, are likely to have far higher levels of soot in their than those living near a solar collection farm. Another less well known problem with soot models or reports regarding their levels, is the lack of accounting for the differing amounts of soot that result from different types of polluters, i.e. some coal plants produce much more soot then others. Also some soot results from other sources such as burning crops (rice fields, etc.) or from burning biofuels. All produce different amounts of soot.

In this new effort, the researchers applied new fuel consumption data from various sources along with other new data that better describes how much soot different processes produce. The result is a model defined by regions, rather than countries, which the researchers claim has a bias reduction of −88 percent to −35 percent in Asia and indicates a whopping 130 percent higher worldwide concentration rate than that obtained from traditional country defined models.

Because the team came up with such striking results, it's likely other teams will join the effort to better estimate the true amount of soot people are breathing, which hopefully will lead to stronger efforts to reduce it.

Explore further: Home cooking, traffic are sources of key air pollutants from China

More information: Exposure to ambient black carbon derived from a unique inventory and high-resolution model, Rong Wang, PNAS, DOI: 10.1073/pnas.1318763111

Black carbon (BC) is increasingly recognized as a significant air pollutant with harmful effects on human health, either in its own right or as a carrier of other chemicals. The adverse impact is of particular concern in those developing regions with high emissions and a growing population density. The results of recent studies indicate that BC emissions could be underestimated by a factor of 2–3 and this is particularly true for the hot-spot Asian region. Here we present a unique inventory at 10-km resolution based on a recently published global fuel consumption data product and updated emission factor measurements. The unique inventory is coupled to an Asia-nested (∼50 km) atmospheric model and used to calculate the global population exposure to BC with fully quantified uncertainty. Evaluating the modeled surface BC concentrations against observations reveals great improvement. The bias is reduced from −88% to −35% in Asia when the unique inventory and higher-resolution model replace a previous inventory combined with a coarse-resolution model. The bias can be further reduced to −12% by downscaling to 10 km using emission as a proxy. Our estimated global population-weighted BC exposure concentration constrained by observations is 2.14 μg⋅m−3; 130% higher than that obtained using less detailed inventories and low-resolution models.

Related Stories

Half of inhaled diesel soot gets stuck in the lungs: study

June 27, 2012

The exhaust from diesel-fuelled vehicles, wood fires and coal-driven power stations contains small particles of soot that flow out into the atmosphere. The soot is a scourge for the climate but also for human health. Now ...

Ultrafine particles raise concerns about improved cookstoves

March 27, 2013

A new study raises concerns about possible health impacts of very small particles of soot released from the "improved cookstoves" that international aid agencies are promoting to replace open-fire cooking in developing countries. ...

Space image: Burning

May 26, 2011

( -- Because of the absence of gravity, fuels burning in space behave very differently than they do on Earth. In this image, a 3-millimeter diameter droplet of heptane fuel burns in microgravity, producing soot. ...

Recommended for you

Rainfall's natural variation hides climate change signal

February 22, 2018

New research from The Australian National University (ANU) and ARC Centre of Excellence for Climate System Science suggests natural rainfall variation is so great that it could take a human lifetime for significant climate ...

Seasonal patterns in the Amazon explained

February 22, 2018

Environmental scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have led an international collaboration to improve satellite observations of tropical forests.


Adjust slider to filter visible comments by rank

Display comments: newest first

3.7 / 5 (3) Jan 28, 2014
Notice almost nothing in Australia. Majority is nuclear power!
5 / 5 (1) Jan 28, 2014
nothing in australia because... there's NOTHING in australia! look at west africa, northern canada, alaska. same thing

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.