

Explaining perfect forward secrecy

December 2 2013, by Richard Mortier

How do you keep your private info under lock and key? Credit: IntelFreePress

Twitter has announced it is introducing perfect forward secrecy to help
users protect their information from spies and cyber-criminals.

Even if we don't realise it, we all rely on cryptography when we use the
web. It is at the heart of social networks, retail sites and any other sites
that provide web addresses beginning with HTTPS, the secure HTTP
protocol.

1/4

https://blog.twitter.com/2013/forward-secrecy-at-twitter-0

When you use HTTPS instead of HTTP, it invokes a set of protocols that
encrypt communications between your browser and the server it's talking
to so no eavesdropper can listen in. But a malicious attacker will still do
their best to get at what you're saying. It is one class of attack like this
that perfect forward secrecy attempts to block.

Chatting without PFS

Encryption schemes all rely on some secret information held by one or
both parties to the communication. The basic operation of the HTTPS
protocol is for the browser and server to exchange information so both
can agree on a secret session key. This key is used to encrypt the rest of
the communication session. The clever bit is that while all the
information in the exchange is public, even if an attacker observes the
entire exchange, they still cannot capture the secret your browser and the
server agree on.

To agree on this session key browser and server use public key
cryptography where a secret key used to encrypt communications is split
into two parts, one public, the other private. Then, if one user, let's call
him Bob, encrypts his data with another, Alice's, public key, only Alice's
private key – and thus, if she's careful, only Alice – can decrypt it.
Assuming Alice is running the web server and Bob is running a browser
connecting to Alice's server, in traditional HTTPS Bob's browser would
generate a random session key, encrypt it with Alice's public key and
send it to Alice. Alice can then use her private key to decrypt this session
key, and the session key becomes a shared secret that can be used to
encrypt the rest of the session's communication between Alice and Bob.

If an attacker were able to capture Alice's private key – whether due to
Alice's carelessness, legal demands requiring Alice to surrender her keys,
or through more nefarious means – and they're also able to capture all
communications with Alice's server, then the attacker would be able to

2/4

https://phys.org/tags/browser/
https://phys.org/tags/attacker/
https://phys.org/tags/private+key/
https://phys.org/tags/public+key/

decrypt the key exchange part of these sessions. They could then extract
the no-longer-secret session keys and read all of these communications
between clients and Alice's server.

What makes PFS different

By applying PFS, a different set of cryptographic protocols replace the
session key exchange process with one that never sends the secret session
key across the network, even in an encrypted form. As a result, even if
the attacker manages to get Alice's private key, they will not be able to
recover the still-secret-session keys, and so they will not be able to
decrypt any of the communications with Alice's server.

There is a cost to doing this: the cryptography used in PFS is slightly
more complex than the traditional techniques so it does take more
processing power. But it is not an insurmountable burden. In practice it
will usually be negligible compared to all the other things that the server
and browser will be doing at the same time.

The other problem arises if you run a farm of servers rather than a single
server, as all modern large-scale web services must. Much as with human
conversation, sessions between browser and server will often go idle but
then start up again. To manage the load in their web-farm, a service
provider will often wish to resume a session on a different server from
that it originated on. To do this with PFS means sharing the session keys
among all the servers in the web-farm. And of course, this has to be done
without recording the secret session keys anywhere. Otherwise all that's
been achieved is to change the file that the attacker needs to steal from
the one containing the private key to the one containing the session keys.

Ultimately then, PFS should be a good thing for everyone, keeping your
communications secure against another class of attack. Everyone, that is,
who can make use of it – not all browsers, particularly older browsers,

3/4

https://phys.org/tags/servers/

support it. But that's just another good reason to upgrade.

This story is published courtesy of The Conversation (under Creative
Commons-Attribution/No derivatives).

Source: The Conversation

Citation: Explaining perfect forward secrecy (2013, December 2) retrieved 9 April 2024 from
https://phys.org/news/2013-12-secrecy.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

http://theconversation.edu.au/
https://phys.org/news/2013-12-secrecy.html
http://www.tcpdf.org

