Magnetic properties in graphene could unlock broad applications from information processing to medicine

December 23, 2013 by Marlen Mursuli
Sakhrat Khizroev

( —In the three years since the Nobel Committee awarded its prize in physics for the discovery of graphene – a new material that many think can change the world due to its unprecedented strength, flexibility and conductivity – researchers have been trying to establish the presence of magnetism, which could revolutionize its application in a number of areas.

Now a team of researchers from Florida International University, the University of California–Berkeley, the University of California-Riverside and the Georgia Institute of Technology has unlocked a secret, establishing the presence of magnetic properties in nanostructures at room temperature.

"Our discovery could make graphene the most important contender in the race to become the core material in future computing chips," said Sakhrat Khizroev, professor in FIU's Department of Electrical and Computer Engineering.

The team, which also includes Jeongmin Hong at UC Berkeley, Robert Haddon at UC Riverside and Walt de Heer at the Georgia Tech, has been working on these experiments since 2008. The pristine graphene used in the experiments was grown at Georgia Tech and chemically functionalized at UC Riverside. The physics of magnetism was studied at FIU and UC Berkeley.

The potential applications for magnetic graphene would stretch broadly from to medicine. A major focus for Khizroev and his fellow researchers is its application to the emerging field of spintronics, which stands for "spin transport electronics." Also known as magneto electronics, spintronics involves a signal being processed using magnetic spin properties instead of an electric charge. Its application could result in higher data transfer speed, greater processing power and increased memory density and storage capacity.

Khizroev and his fellow researchers believe their discoveries could lead to spintronic devices for energy-efficient and extremely fast information processing. A two-dimensional matrix of carbon atoms just one atom thick, graphene is of particular interest to industries where miniaturization is important, such as electronics.

While silicon transistors have already gone about as small as they can go, graphene can be literally be as small as physically possible, opening up new frontiers for everything from computer chips to solar cells.

"We have spent the last five years working on this important challenge," Khizroev said. "Demonstrating the presence of long-range magnetic order in functionalized graphene nanostructures paves the way to realizing the dream of spintronics."

Explore further: Graphene origami opens up new spintronics features

More information: "Chemically Engineered Graphene-Based 2D Organic Molecular Magnet." Jeongmin Hong, Elena Bekyarova, Walt A. de Heer, Robert C. Haddon, and Sakhrat Khizroev. ACS Nano 2013 7 (11), 10011-10022. DOI: 10.1021/nn403939r

Related Stories

Graphene origami opens up new spintronics features

December 19, 2013

( —Despite graphene's many impressive properties, its lack of a bandgap limits its use in electronic applications. In a new study, scientists have theoretically shown that a bandgap can be opened in graphene by ...

Controlling magnetic clouds in graphene

June 12, 2013

( —Wonder material graphene can be made magnetic and its magnetism switched on and off at the press of a button, opening a new avenue towards electronics with very low energy consumption.

New magnetic graphene may revolutionise electronics

May 10, 2013

Researchers from IMDEA-Nanociencia Institute and from Autonoma and Complutense Universities of Madrid (Spain) have managed to give graphene magnetic properties. The breakthrough, published in the journal Nature Physics, opens ...

Recommended for you

A 100-fold leap to GigaDalton DNA nanotech

December 6, 2017

DNA, present in almost every cell, is increasingly being used as a building material to construct tiny, but sophisticated structures such as autonomous 'DNA walkers' that can move along a microparticle surface, fluorescent ...

Go with the flow (or against it)

December 6, 2017

Queen's University researchers are using magnetic fields to influence a specific type of bacteria to swim against strong currents, opening up the potential of using the microscopic organisms for drug delivery in environments ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.