Studies would lead to lighter, cheaper magnets

December 23, 2013 by Anne M Stark, Lawrence Livermore National Laboratory

A Lawrence Livermore researcher prepares a sample at Oak Ridge National Laboratory's Spallation Neutrons and Pressure Diffractometer Credit: SNAP
( —Sometimes you have to apply a little pressure to get magnetic materials to reveal their secrets. By placing a permanent magnet under high pressures, Lawrence Livermore researchers are exploring how atomic structure enhances magnetic strength and resistance to demagnetization. This fundamental research into magnetic behavior has important implications for engineering stronger, cheaper magnets.

Permanent magnets based on are in high demand for energy technologies such as windmills and electric motors that generate rotational energy through opposing magnetic forces.

In September 2013, a team from Lawrence Livermore National Laboratory (LLNL) and the National Institute of Standards and Technology conducted neutron scattering research at Oak Ridge National Laboratory's Spallation Neutron Source Spallation Neutrons and Pressure (SNAP) Diffractometer to examine the magnetic properties of a rare-earth-based containing the elements lanthanum and cobalt, known as LaCo5.

"We're using high pressure to tune the structural and magnetic properties of permanent magnets like LaCo5," said Jason Jeffries of the LLNL research team. "We can see how the atomic structure of the material changes as the magnetic moment, or the magnetic strength, of the system changes under pressure."

Researchers applied 20 GPa—about 200,000 times atmospheric pressure—to a 100 mg sample of LaCo5 with a SNAP pressure cell. The suite of pressure cells available at SNAP includes some that can achieve pressures near 100 GPa and that can be used to study a range of materials under high-pressure conditions applicable to research in solid-state physics, hydrogen storage, planetary ices and geochemistry, among other fields. Jeffries said the LLNL team hopes to expand their research to pressures as high as 25 to 50 GPa.

One of the team's most important research goals is to see if expensive, rare earth elements that are increasing in scarcity and driving up the cost of permanent magnets can be substituted with cheaper elements or entirely new, engineered materials.

"For instance, if we could replace or reduce the amount of neodymium in a commercial neodymium iron boron magnet, which is used in many electric motors, then we could make a significantly cheaper magnet," Jeffries said. "This costly element makes up a small fraction of the crystal stoichiometry, yet it is what is determining the price."

Neutron scattering allows researchers to determine the length of chemical bonds and reorganization of molecular units within a structure under high pressure.

"Neutrons are sensitive to the ordered magnetic moments of the system, allowing us to see magnetic effects, which are hard to capture with x-ray scattering," Jeffries said. "If we can understand why a magnetic property is enhanced then perhaps we can engineer magnetic materials with optimized properties."

Apart from reducing the cost of magnets by reducing the need for rare earth compounds, understanding how to develop a stronger magnet could also help scientists and engineers reduce the size and weight of magnets for energy-conscious designs.

"Motors that need a lot of magnetic material are heavy," Jeffries said. "And reducing weight in vehicles, for example, can improve fuel efficiency or range."

Although researchers (with this team and others) are studying a range of permanent magnets, experimental work like that being conducted on SNAP could help reduce trial-and-error in magnetics research by improving predictive models.

"The experiments are there to help us understand and improve our theoretical models," Jeffries said. "Ultimately, computer models that are refined based on experimental results could perform theoretical calculations to predict the properties of new or less-observed ." Theoretical models will help researchers determine whether the magnetic strength of a compound might be improved by replacing an element or manipulating a bonding mechanism.

"This is the fundamental science that could lead to applications for building better magnets," Jeffries said. "And the capabilities of high-pressure diffractometers like SNAP are under-represented for studying magnetism. There's much more to be learned."

Explore further: Toshiba develops dysprosium-free samarium-cobalt magnet to replace heat-resistant neodymium magnet

Related Stories

Electrical control of single atom magnets

December 8, 2013

The energy needed to change the magnetic orientation of a single atom – which determines its magnetic stability and therefore its usefulness in a variety of future device applications – can be modified by varying the ...

Magnetic idea: Rare-earth recycling

December 4, 2012

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved.

Test magnet reaches 13.5 tesla – a new CERN record

November 18, 2013

The Short Model Coil (SMC) programme tests new magnet technologies with magnets about 30 centimetres long. The technology developed in the SMC will eventually help engineers build more powerful magnets for the Large Hadron ...

Probing the secrets of unmagnetized magnets

June 29, 2012

EPFL physicists studying magnetic materials have discovered that they have some unexpected properties. Their research could lead to the development of even tinier magnets in the future.

Recommended for you

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.