High-speed X-ray 'camera' beamline taking shape at NSLS-II

November 21, 2013 by Chelsea Whyte, Brookhaven National Laboratory
The team at the Coherent Hard X-ray beamline at NSLS-II includes (from left to right): designer Kelly Roy, beamline scientist Lutz Wiegart, contractor and CEO of Huber Diffractionstechnik Norman Huber, beamline technician Joe Sullivan, group leader Andrei Fluerasu, lead engineer Mary Carlucci-Dayton, and controls engineer Daron Chabot.

(Phys.org) —"Phew!" Andrei Fluerasu breathes a sigh of relief as he looks over the plans for the beamline he has been building with a team of scientists, engineers and technicians at the National Synchrotron Light Source II (NSLS-II)—the newest large-scale scientific tool nearing completion at the U.S. Department of Energy's Brookhaven National Laboratory. Fluerasu is the group leader for the Coherent Hard X-Ray (CHX) beamline, which will serve as a high-speed "camera" for exploring atom-scale details of materials, biological samples and more, and has been years in the making.  "It feels like having a baby, but one that takes a very, very long time."

"It's exciting that it's becoming more real," he said. "Seeing things transition from paper to the experimental floor makes me look forward to the science we're going to be doing very soon here." The CHX beamline will be one of seven slated to do early science at NSLS-II when it comes online in 2015. For staff and visiting scientists, it will be a tool to do a wide range of science, such as studying materials for energy storage, or imaging to understand drug delivery processes. 

Fluerasu's colleague, Lutz Wiegart, is responsible for developing the endstation instrumentation at CHX and its technical implementation in preparation for the start of the scientific research program, and they both smile wearily as they excitedly discuss what's coming in the next few months for their project. 

The beamline optics are currently on the open seas, being shipped in from Germany. One component, an ultra-high stability mirror with ultra-high flatness, will be positioned to deflect the light beam that originates from electrons zipping around the NSLS-II storage ring and cut out higher energy x-rays. The mirror will be joined by beam diagnostics, safety components, slits and collimators that narrow the beam. All these pieces, together with two ultra-high stability monochromators that select specific wavelengths of light, expected to be delivered in a couple of months, will produce a beam of photons 10 times more coherent than what is available today at other leading synchrotron light sources.

When assembled, the beamline will act like a high-speed camera with an extremely fast shutter, capable of taking "nanoscale movies" of motion within materials or biological samples. "When you have a camera with a fast shutter, you need a lot of light to take good pictures. We definitely have that at NSLS-II," Fluerasu said. 

NSLS-II will be the one of the brightest light sources in the world with x-rays a billion times brighter than those at a doctor's office. 

To ensure that the beamline produces clear images, the optics will be affixed to three stabilizing granite blocks, the largest of which weighs five tons. "With the stability we've built in, we'll be able to measure diffusive motions in complex systems such as biomembranes, which are important in the signaling and transport that happens within cells," said Wiegart. 

Seeing the infinitesimal structures of materials requires x-rays exiting a sample at large angles, while measuring the dynamics of a material – how matter moves within a sample on the mesoscale – requires detection of x-rays scattered by a small angle. The combination of a high stability multi-circle diffractometer and a 15-meter long small-angle x-ray scattering (SAXS) table at CHX will allow for both of these types of measurements to be performed on the same sample at the same beamline. Doing both with the same setup reduces error and provides "purer data," Wiegart said. 

"We've been planning, designing and building this beamline for so long. Getting to use it for full-time science should be really exciting," he added. "This is a tool that will help us study phenomena on very small scales and to better understand the interplay between nanoscale structure, mesoscale dynamics and and macroscopic properties of materials.

Explore further: Bright light, big mirror: Precision X-ray focusing at NSLS-II

Related Stories

Sound, light sources and the thrill of glimpsing the future

March 1, 2013

Scientific research is a process fraught with fits and starts, dead-ends, dashed dreams, unexpected turns, and the occasional exhilarating insight. As scientists, many of us continue along our career path in part because ...

SSRL Beamline 13 Achieves First Light

February 29, 2008

On February 14, the first light shone into the Stanford Synchrotron Radiation Laboratory's newest beamline. Beamline 13, which has been under construction for the past two years, will allow new types of soft X-ray material ...

New beamline at MAX II opens for research

May 24, 2011

Using the new beamline, 911-4, at MAX-lab in Lund, Sweden, researchers can study a wide range of different types of material with a resolution of a few nanometres. This could be useful for both basic research and industry ...

Recommended for you

X-rays reveal chirality in swirling electric vortices

January 16, 2018

Scientists used spiraling X-rays at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) to observe, for the first time, a property that gives handedness to swirling electric patterns – dubbed ...

Quan­tum physics turned into tan­gi­ble re­al­ity

January 16, 2018

ETH physicists have developed a silicon wafer that behaves like a topological insulator when stimulated using ultrasound. They have thereby succeeded in turning an abstract theoretical concept into a macroscopic product.

Slow 'hot electrons' could improve solar cell efficiency

January 16, 2018

Photons with energy higher than the band gap of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.