Creatures of influence: New model identifies critical species in food webs and social networks

November 5, 2013

In the children's game "Jenga", removing the wrong block from a tower of wooden blocks can cause the entire tower to collapse. In the same way, removing certain species from an ecosystem can cause a collapse in ecological function. A common scientific question has been to identify these critical species in different ecosystems and an international research team has developed mathematical tools that can estimate which species are most influential in a food web.

The researchers from the University of Bristol, the Max Planck Institute for Physics of Complex Systems and the US Geological Survey have taken a new modeling approach to the question. The team, using the new mathematical tools, found that long-lived, generalist top predators—such as otters— play the most influential roles within a food web. The findings are published today in Proceedings of the Royal Society B.

Helge Aufderheide of the Max Planck Institute and University of Bristol, who led the research, said: "The interactions in an ecosystem are so complex that one can often only guess about the roles that each species plays. Therefore, knowing how to find the key players makes all the difference for understanding where to focus studies."

Long-lived, generalist top predators can highly influence ecosystems because they feed on different types of prey that occupy different parts of the food web. For example, otters feed on a wide variety of aquatic prey and can influence multiple species throughout the course of their relatively long lifespan. Removing otters from the ecosystem would cause long-term disruptions to all those species, a theory that the new models can now confirm for other species and ecosystems.

Understanding how the gain or loss of a single species affects a complex food web has been a difficult mathematical challenge, and the new findings provide fundamental insights into complex natural systems. The new study offers a rule of thumb to help other studies focus their research and data collection on in order of their expected importance, and increase the efficiency of their research effort.

Kevin Lafferty, an author of the paper from USGS, said: "As a biologist who studies , I'm hopeful that we can use this approach to help focus our field work."

The new approach has non-ecological applications as well. Even though the research team applied the computational tools on food webs, their approach also can be applied to other types of —from electricity grids to online social networks—to identify influential components.

Explore further: Do parasites upset food web theory?

More information: Predicting community responses in the face of imperfect knowledge and network complexity by Helge Aufderheide, Lars Rudolf, Thilo Gross, and Kevin D. Lafferty, Proceedings of the Royal Society B, 6 November 2013. rspb.royalsocietypublishing.or … .1098/rspb.2013.2355

Related Stories

Do parasites upset food web theory?

June 11, 2013

Parasites comprise a large proportion of the diversity of species in every ecosystem. Despite this, they are rarely included in analyses or models of food webs. If parasites play different roles from other predators and prey, ...

A new model for understanding biodiversity

November 21, 2011

(PhysOrg.com) -- Animals like foxes and raccoons are highly adaptable. They move around and eat everything from insects to eggs. They and other "generalist feeders" like them may also be crucial to sustaining biological diversity, ...

Drawing connections between food webs

April 4, 2012

Ecosystems today face various threats, from climate change to invasive species to encroaching civilization. If we hope to protect these systems and the species that live in them, we must understand them — an extremely ...

Scientists find universal rules for food-web stability

August 6, 2009

The findings, published in this week's issue of Science, conclude that food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels. The computations also reveal that small ...

Recommended for you

Energy-saving LEDs boost light pollution worldwide

November 22, 2017

They were supposed to bring about an energy revolution—but the popularity of LED lights is driving an increase in light pollution worldwide, with dire consequences for human and animal health, researchers said Wednesday.

Re-cloning of first cloned dog deemed successful thus far

November 22, 2017

(Phys.org)—A team of researchers with Seoul National University, Michigan State University and the University of Illinois at Urbana-Champaign has re-cloned the first dog to be cloned. In their paper published in the journal ...

Testing the advantage of being left-handed in sports

November 22, 2017

(Phys.org)—Sports scientist Florian Loffing with the Institute of Sport Science, University of Oldenburg in Germany has conducted a study regarding the possibility of left-handed athletes having an advantage over their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.