How botox binds to neurons

November 18, 2013
The depicted structure shows how botox binds to the protein receptor synaptic vesicle protein 2 of the neuron. What can be seen is the crystal structure of the complex consisting of the luminal domain of synaptic vesicle protein 2 (blue) and the receptor binding domain of botulinum neurotoxin A (green).

Botulinum neurotoxin A, better known as botox, is a highly dangerous toxin that causes paralysis in man that may prove fatal. In cosmetic applications the paralysing action of small doses is used in a specific manner for the temporary elimination of wrinkles and in medicine as a treatment for migraine or to correct strabismus. An international research team from the Paul Scherrer Institute, Utrecht University and the pharmaceutical company UCB has now taken an important step towards understanding the action of botulinum neurotoxin A. They have determined the x-ray crystal structure of a protein complex which clearly shows how the toxin molecule binds to the protein receptor, synaptic vesicle protein 2. The findings may prove useful for the development of improved botox drugs with a lower risk of overdosage. The structure was determined at the Swiss Light Source synchrotron at the Paul Scherrer Institute. The findings are to be published in the renowned scientific journal Nature.

The consumption of spoiled tinned food can lead to botulism in man, an intoxication that causes life-threatening paralysis. One of the causative factors is the toxin botulinum neurotoxin A which is produced by the bacterium Clostridium botulinum. It can only replicate in the oxygen-free atmosphere of the tin. The toxin attacks the neurons and prevents the passing on of neuronal signals to the muscles. In recent decades, increasingly practical applications of the toxin have been developed. Its use in cosmetics where the substance is called is particularly well known. When injected subcutaneously the toxin leads to relaxation of muscles and makes wrinkles disappear temporarily. This agent is also frequently used in medicine to treat migraine. In people suffering from strabismus, botulinum neurotoxin A can be used specifically to slightly weaken the eye muscle and facilitate normal vision.

Synchrotron rays reveal the protein complex structure

One fundamental step, needed to trigger the action of the , is the binding of a molecule to a molecule of the synaptic vesicle protein 2 of the nerve cell. The interaction between the receptor and botulinum neurotoxin A molecule leads to a cascade of events which prevent the neuron from releasing messenger substances that normally encourage muscle movement. An international team headed by Richard Kammerer at the Laboratory of Biomolecular Research at the Paul Scherrer Institute has now succeeded in determining the exact details of the molecular interaction between botox and its receptor. "Our findings are an important step towards understanding the mode of action of botulinum neurotoxin A. I am, therefore, confident that our structure will evoke major interest in the field", explains Kammerer. For the determination of the structure the researchers used the protein crystallography method. This involves the production of large amounts of the molecules and their arrangement in a regular structure, a crystal. This crystal is then irradiated with x-rays from the Swiss Light Source synchrotron. The principle behind this technology is that x-rays are diffracted by the molecules in the crystal. From these diffraction patterns the researchers can then determine the atomic structure of the molecule under investigation.

The video will load shortly

New drugs possible

The findings not only help us to better understand the action of botox but may also be of considerable practical benefit. "As a drug, A has a very narrow therapeutic window", explains Roger Benoit, researcher at PSI and the first author of the article. "This means that even a minor overdose can have a damaging effect". With our findings it should be possible to develop drugs with weaker action where the risk of overdosage would then be lower."

Explore further: Scientists help identify possible botulism blocker

More information: "Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A," Roger M. Benoit, Daniel Frey, Manuel Hilbert, Josta T. Kevenaar, Mara M. Wieser, Christian U. Stirnimann, David McMillan, Tom Ceska, Florence Lebon, Rolf Jaussi, Michel O. Steinmetz, Gebhard F.X. Schertler, Casper C. Hoogenraad, Guido Capitani and Richard A. Kammerer . Nature Advance Online Publication 17 November 2013 . DOI: 10.1038/nature12732

Related Stories

Scientists help identify possible botulism blocker

October 11, 2013

U.S. and German scientists have decoded a key molecular gateway for the toxin that causes botulism, pointing the way to treatments that can keep the food-borne poison out of the bloodstream.

Mining the botulinum genome

May 14, 2013

(Norwich BioScience Institutes) Scientists at the Institute of Food Research have been mining the genome of C. botulinum to uncover new information about the toxin genes that produce the potent toxin behind botulism.

Disarming the botulinum neurotoxin

February 23, 2012

Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and the Medical School of Hannover in Germany recently discovered how the botulinum neurotoxin, a potential bioterrorism agent, survives the hostile ...

Beyond Botox: Natural born killer or medical miracle?

March 15, 2013

Botox is best known for its use in cosmetic procedures, but this potent neurotoxin could be transformed into an extraordinary drug to treat a raft of debilitating conditions, a leading scientist will tell an audience at the ...

New insights about Botulinum toxin A

December 2, 2010

A new study by researchers at the Faculty of Kinesiology, University of Calgary, is raising questions about the therapeutic use of botulinum toxin A.

Recommended for you

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.