New study reveals why jellyfish are such efficient swimmers (w/ Video)

October 8, 2013 by Bob Yirka report
Aequorea victoria. Image credit: Sierra Blakely/Wikipedia.

( —A team of researchers in the U.S. has found that jellyfish are extremely efficient swimmers. In their paper published in Proceedings of the National Academy of Sciences, the team reports using a technique called particle image velocimetry to measure the secondary thrust jellyfish use to increase their energy efficiency when swimming.

For years, jellyfish have been considered a nuisance—they sting swimmers and crowd out other more desirable ocean dwellers. In more recent times, they have become even more of a problem as they grow in both numbers and size—most scientists attribute this to their adaptability to warmer ocean temperatures and a decrease in other populations due to overfishing by humans. Now, it appears they have another natural advantage that gives them an edge over other ocean dwelling creatures as well—they are far more efficient when swimming leaving them more energy to find food and mate.

Scientists have known for a long time that jellyfish move through the water by squeezing the bell that forms ahead of their body. That squeezing pushes water backwards forcing the jellyfish forward. More recently it has been learned that they also are pushed forward by a secondary thrust that occurs as the bell is refilling with . Until now, however, it was unknown just how much benefit jellyfish got from this.

The video will load shortly.
DPIV of a 2-cm A. aurita jellyfish shows the velocity vectors and vorticity produced by swimming. Notice how the stopping vortex forms upstream and on the exumbrellar surface of the animal before recovery. The vortex ring then moves under the bell as its vorticity (energy) increases. Credit: PNAS, Published online before print October 7, 2013, doi: 10.1073/pnas.1306983110

To find out, the anesthetized some test specimens and placed them in a tank filled with very tiny glass beads. As the jellyfish moved in the beads, a laser was shone and reflected off the beads, allowing the researchers to measure its speed and how much energy the creature was expending as it moved. They noted that immediately after squeezing its bell, a vortex formed as the bell relaxed. That vortex pushed against the jellyfish's body, propelling it forward. More importantly, the researchers found that the secondary thrust required no expenditure by the jellyfish at all—it was purely mechanical, like a rubber-band snapping back to its original size after being stretched. That extra boost the researchers report (which averaged about a thirty percent gain) means that jellyfish are by far the most efficient swimmers in the sea, giving them an advantage over virtually all other sea life.

The video will load shortly.
Instantaneous pressure field estimations are shown simultaneously with body velocity to demonstrate a mechanistic explanation for how jellyfish can accelerate, and thus gain extra distance, during a period of the swimming cycle in which there is no kinematic motion. Credit: PNAS, Published online before print October 7, 2013, doi: 10.1073/pnas.1306983110

The findings may lead to increases in efficiency in swimming robots as scientists seek to recreate the mechanics of jellyfish—that could mean swimming robots plying the seas sending back data for years on end, or as some have suggested, new kinds of robots that kill real .

Explore further: UN warns of jellyfish 'vicious circle' in Med

More information: Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans, PNAS, Published online before print October 7, 2013, DOI: 10.1073/pnas.1306983110

Gelatinous zooplankton populations are well known for their ability to take over perturbed ecosystems. The ability of these animals to outcompete and functionally replace fish that exhibit an effective visual predatory mode is counterintuitive because jellyfish are described as inefficient swimmers that must rely on direct contact with prey to feed. We show that jellyfish exhibit a unique mechanism of passive energy recapture, which is exploited to allow them to travel 30% further each swimming cycle, thereby reducing metabolic energy demand by swimming muscles. By accounting for large interspecific differences in net metabolic rates, we demonstrate, contrary to prevailing views, that the jellyfish (Aurelia aurita) is one of the most energetically efficient propulsors on the planet, exhibiting a cost of transport (joules per kilogram per meter) lower than other metazoans. We estimate that reduced metabolic demand by passive energy recapture improves the cost of transport by 48%, allowing jellyfish to achieve the large sizes required for sufficient prey encounters. Pressure calculations, using both computational fluid dynamics and a newly developed method from empirical velocity field measurements, demonstrate that this extra thrust results from positive pressure created by a vortex ring underneath the bell during the refilling phase of swimming. These results demonstrate a physical basis for the ecological success of medusan swimmers despite their simple body plan. Results from this study also have implications for bioinspired design, where low-energy propulsion is required.

Related Stories

UN warns of jellyfish 'vicious circle' in Med

May 30, 2013

The United Nations on Thursday warned overfishing in the Mediterranean was boosting jellyfish, which reduce stocks further and it called for jellyfish to be used in food, medicine and cosmetics.

Jellyfish exterminator robot developed

September 27, 2013

A team led by KAIST Civil and Environmental Engineering Department's Professor Hyeon Myeong has just finished testing the cooperative assembly robot for jellyfish population control, named JEROS, in the field.

Jellyfish replacing fish in over-exploited areas

September 16, 2011

( -- Over-fished commercial stocks of plankton-eating fish have been replaced in several locations by jellyfish species. This appears to be something of a paradox because fish move quickly and can see their prey, ...

Swimming jellyfish may influence global climate

November 1, 2011

Swimming jellyfish and other marine animals help mix warm and cold water in the oceans and, by increasing the rate at which heat can travel through the ocean, may influence global climate. The controversial idea was first ...

Boom in jellyfish: Overfishing called into question

May 6, 2013

Will we soon be forced to eat jellyfish? Since the beginning of the 2000s, these gelatinous creatures have invaded many of the world's seas, like the Japan Sea, the Black Sea, the Mediterranean Sea, etc. Is it a cyclic phenomenon, ...

Recommended for you

Live fast die young: Updating signal detection theory

October 18, 2017

Signal Detection Theory is a popular and well-established idea that has influenced behavioral science for around 50 years. Essentially, the theory holds that in a predator-prey relationship, prey animals will show more wariness ...

Tiny protein coiled coils that self-assemble into cages

October 17, 2017

(—A large team of researchers with members from Slovenia, the U.K, Serbia, France and Spain has developed a technique that causes proteins to self-assemble into geometric shapes on demand. In their paper published ...

The importance of asymmetry in bacteria

October 17, 2017

New research published in Nature Microbiology has highlighted a protein that functions as a membrane vacuum cleaner and which could be a potential new target for antibiotics.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (7) Oct 08, 2013
Gelatinous zooplankton populations are well known for their ability to take over perturbed ecosystems...

Why don't they just stick with "Jelly Fish".

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.