
 

Writing programs using ordinary language

July 11 2013, by Larry Hardesty

  
 

  

A new algorithm can automatically convert natural-language specifications into
"regular expressions" — special-purpose combinations of symbols that allow
very flexible searches of digital files. Credit: CHRISTINE DANILOFF

1/6



 

In a pair of recent papers, researchers at MIT's Computer Science and
Artificial Intelligence Laboratory have demonstrated that, for a few
specific tasks, it's possible to write computer programs using ordinary
language rather than special-purpose programming languages.

The work may be of some help to programmers, and it could let
nonprogrammers manipulate common types of files—like word-
processing documents and spreadsheets—in ways that previously
required familiarity with programming languages. But the researchers'
methods could also prove applicable to other programming tasks,
expanding the range of contexts in which programmers can specify
functions using ordinary language.

"I don't think that we will be able to do this for everything in
programming, but there are areas where there are a lot of examples of
how humans have done translation," says Regina Barzilay, an associate
professor of computer science and electrical engineering and a co-author
on both papers. "If the information is available, you may be able to learn
how to translate this language to code."

In other cases, Barzilay says, programmers may already be in the
practice of writing specifications that describe computational tasks in
precise and formal language. "Even though they're written in natural
language, and they do exhibit some variability, they're not exactly
Shakespeare," Barzilay says. "So again, you can translate them."

The researchers' recent papers demonstrate both approaches. In work
presented in June at the annual Conference of the North American
Chapter of the Association for Computational Linguistics, Barzilay and
graduate student Nate Kushman used examples harvested from the Web
to train a computer system to convert natural-language descriptions into
so-called "regular expressions": combinations of symbols that enable file
searches that are far more flexible than the standard search functions

2/6

https://phys.org/tags/familiarity/
https://phys.org/tags/programming+languages/
https://phys.org/tags/computer+science/
https://phys.org/tags/computational+tasks/


 

available in desktop software.

In a paper being presented at the Association for Computational
Linguistics' annual conference in August, Barzilay and another of her
graduate students, Tao Lei, team up with professor of electrical
engineering and computer science Martin Rinard and his graduate
student Fan Long to describe a system that automatically learned how to
handle data stored in different file formats, based on specifications
prepared for a popular programming competition.

Regular irregularities

As Kushman explains, computer science researchers have had some
success with systems that translate questions written in natural language
into special-purpose formal languages—languages used to specify
database searches, for instance. "Usually, the way those techniques work
is that they're finding some fairly direct mapping between the natural
language and this formal representation," Kushman says. "In general, the
logical forms are handwritten so that they have this nice mapping."

Unfortunately, Kushman says, that approach doesn't work with regular
expressions, strings of symbols that can describe the data contained in a
file with great specificity. A regular expression could indicate, say, just
those numerical entries in a spreadsheet that are three columns over
from a cell containing a word of any length whose final three letters are
"BOS."

But regular expressions, as ordinarily written, don't map well onto
natural language. For example, Kushman explains, the regular expression
used to search for a three-letter word starting with "a" would contain a
symbol indicating the start of a word, another indicating the letter "a," a
set of symbols indicating the identification of a letter, and a set of
symbols indicating that the previous operation should be repeated twice.

3/6

https://phys.org/tags/desktop+software/
https://phys.org/tags/electrical+engineering/
https://phys.org/tags/electrical+engineering/


 

"If I'm trying to do the same syntactic mapping that I would normally
do," Kushman says, "I can't pull out any sub-chunk of this that means
'three-letter.'"

What Kushman and Barzilay determined, however, is that any regular
expression has an equivalent that does map nicely to natural
language—although it may not be very succinct or, for a programmer,
very intuitive. Moreover, using a mathematical construct known as a
graph, it's possible to represent all equivalent versions of a regular
expression at once. Kushman and Barzilay's system thus has to learn only
one straightforward way of mapping natural language to symbols; then it
can use the graph to find a more succinct version of the same expression.

When Kushman presented the paper he co-authored with Barzilay, he
asked the roomful of computer scientists to write down the regular
expression corresponding to a fairly simple text search. When he
revealed the answer and asked how many had gotten it right, only a few
hands went up. So the system could be of use to accomplished
programmers, but it could also allow casual users of, say, spreadsheet
and word-processing programs to specify elaborate searches using
natural language.

Opening gambit

The system that Barzilay, Rinard, Lei and Long developed is one that
can automatically write what are called input-parsing programs, essential
components of all software applications. Every application has an
associated file type—.doc for Word programs, .pdf for document
viewers, .mp3 for music players, and so on. And every file type
organizes data differently. An image file, for instance, might begin with
a few bits indicating the file type, a few more indicating the width and
height of the image, and a few more indicating the number of bits
assigned to each pixel, before proceeding to the bits that actually

4/6

http://phys.org/news/2012-12-graphs.html
http://phys.org/news/2012-12-graphs.html


 

represent pixel colors.

Input parsers figure out which parts of a file contain which types of data:
Without an input parser, a file is just a random string of zeroes and ones.

The MIT researchers' system can write an input parser based on
specifications written in natural language. They tested it on more than
100 examples culled from the Association for Computing Machinery's
International Collegiate Programming Contest, which includes file
specifications for every programming challenge it poses. The system was
able to produce working input parsers for about 80 percent of the
specifications. And in the remaining cases, changing just a word or two
of the specification usually yielded a working parser.

"This could be used as an interactive tool for the developer," Long says.
"The developer could look at those cases and see what kind of changes
they need to make to the natural language—maybe some word is hard
for the system to figure out."

The system begins with minimal information about how written
specifications might correspond to parser programs. It knows a handful
of words that should consistently refer to particular data types—the word
"integer," for instance—and it knows that the specification will probably
describe some data structures that are nested in others: An image file, for
instance, could consist of multiple chunks, and each chunk would be
headed by a few bytes indicating how big it is.

Otherwise, the system just tries lots of different interpretations of the
specification on a few sample files; in the researchers' experiments, the
samples, too, were provided on the competition website. If the resulting
parser doesn't seem to work on some of the samples, the system varies
its interpretation of the specification slightly. Moreover, as it builds
more and more working parsers, it becomes more adept at recognizing

5/6



 

regularities in the way that parsers are specified. It took only about 10
minutes of calculation on an ordinary laptop for the system to produce
its candidate parsers for all 100-odd specifications.

"This is a big first step toward allowing everyday users to program their
computers without requiring any knowledge of programming language,"
says Luke Zettlemoyer, an assistant professor of computer science and
engineering at the University of Washington. "The techniques they have
developed should definitely generalize to other related programming
tasks."

The two paper are titled "From natural language specifications to
program input parsers" and "Using semantic unification to generate
regular expressions from natural language."

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Writing programs using ordinary language (2013, July 11) retrieved 20 March 2024
from https://phys.org/news/2013-07-ordinary-language.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://people.csail.mit.edu/taolei/papers/acl2013.pdf
http://people.csail.mit.edu/taolei/papers/acl2013.pdf
http://people.csail.mit.edu/nkushman/papers/naacl2013.pdf
http://people.csail.mit.edu/nkushman/papers/naacl2013.pdf
http://web.mit.edu/newsoffice/
https://phys.org/news/2013-07-ordinary-language.html
http://www.tcpdf.org

