Mirror, mirror on the wall, who has the lowest noise of them all

July 21, 2013
This is an artist's rendering of an exploded view of the crystalline coating cavity. One of the bonded mirror discs, the key element of the low noise reflectors, can be seen here separated from the glass substrate, along with a magnified view of a unit cell of the AlGaAs crystal structure. Credit: Brad Baxley, JILA Scientific Reports Office (SRO)

Although it may not be immediately obvious, the mechanical properties of optical components have a significant impact on the performance of lasers employed in precision sensing applications. Currently, the mechanical damping of such components, and the inherent mechanical fluctuations they generate, present a roadblock to further advancement of ever more precise measurements of time and space.

For the past decade, researchers in the community have been searching for a solution that allows for the development of high-reflectivity mirrors with simultaneously high mechanical quality. Now an international collaboration of scientists from Vienna, Austria and Boulder, Colorado, USA has demonstrated a novel technology for producing mirrors with a tenfold reduction in mechanical loss. The work, reported in Nature Photonics, represents an entirely new approach for generating high-quality , key components of state-of-the art laser systems for precision measurement.

Combining aspects of semiconductor mirrors borrowed from surface-emitting diode lasers, an epitaxial layer transfer technique gleaned from advance nanofabrication processes, and an in-depth knowledge of mechanical losses gained from the field of cavity optomechanics, the researchers in Vienna realized a novel "crystalline coating" technology. The unprecedented improvement in mechanical quality, verified by the world-renowned experts in precision measurement in Boulder, arises from the intrinsic order of the high-quality used to fabricate the mirrors. The development of such materials was historically driven by advances in microelectronics and photonics, enabling the technologies we interact with every day: high-speed , diode lasers for telecommunications, etc. Previously, the major impediment to utilizing such materials in general optics applications was two-fold: On the one hand, optical surfaces are in many cases curved, which presents a problem for direct crystal growth techniques, and on the other hand,typical optical substrates are made of glass with an amorphous structure that lacks the order required for seeded crystal growth. Circumventing these limitations, the researchers came up with a microfabrication process to separate and then bond high-quality single-crystal films onto curved glass substrates.

The mirror technology described in the manuscript promises to accelerate progress in the development of narrow linewidth laser sources for use in precision measurement systems, spanning time keeping with optical atomic clocks, as well as fundamental physics research involving precision tests of relativity, cavity quantum electrodynamics, and quantum optomechanics. Moreover, leveraging advanced semiconductor production techniques, there is a clear path to implementing large area crystalline coatings in astronomical endeavors, such as gravitational wave detectors. According to Professor Ye, "The development of highly phase coherent optical sources is a key technology that impacts a vast range of scientific explorations. In our own lab, we are able to demonstrate the most stable optical atomic clock thanks to these narrow linewidth lasers, and the progress is marching on!"

"The collaboration with Jun's group was fantastic," states Garrett Cole, who, along with Wei Zhang, is the lead author on the work. "They not only had the courage to take on an unproven technology, but also the ability to tackle a tremendously difficult task: quickly achieving thermally limited noise performance with their characterization system and verifying the high mechanical quality of our mirrors." Following this initial demonstration, the scientists are already hard at work to further improve the technology. Going forward, they plan to combine their novel coatings with the previously demonstrated single-crystal silicon cavity developed by researchers at JILA and PTB in Braunschweig, Germany (see "The World's Most Stable Laser," September 2012). In combination, an all crystalline cavity (comprising crystalline coatings, substrates, and spacer) would enable world-record stability and hence a new milestone in laser technology.

Explore further: The world's most stable laser also promises heightened test precision

More information: Nature Photonics, vol. 7, no. 8, August 2013. DOI: 10.1038/nphoton.2013.174

Related Stories

NIST shows how to make a compact frequency comb in minutes

July 11, 2013

Laser frequency combs-high-precision tools for measuring different colors of light in an ever-growing range of applications such as advanced atomic clocks, medical diagnostics and astronomy-are not only getting smaller but ...

Taking the 'random' out of a random laser

July 15, 2013

(Phys.org) —Random Lasers are tiny structures emitting light irregularly into different directions. Scientists at the Vienna University of Technology have now shown that these exotic light sources can be accurately controlled.

Diamond as a building material for optical circuits

April 11, 2013

The application of light for information processing opens up a multitude of possibilities. However, to be able to adequately use photons in circuits and sensors, materials need to have particular optical and mechanical properties. ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.