

New hardware design makes data encryption
more secure by disguising cloud servers'
memory-access patterns

July 2 2013, by Larry Hardesty

Credit: CHRISTINE DANILOFF/MIT

Cloud computing—outsourcing computational tasks over the
Internet—could give home-computer users unprecedented processing
power and let small companies launch sophisticated Web services
without building massive server farms.

But it also raises privacy concerns. A bank of cloud servers could be
running applications for 1,000 customers at once; unbeknownst to the

1/5

https://phys.org/tags/privacy+concerns/

hosting service, one of those applications might have no purpose other
than spying on the other 999.

Encryption could make cloud servers more secure. Only when the data is
actually being processed would it be decrypted; the results of any
computations would be re-encrypted before they're sent off-chip.

In the last 10 years or so, however, it's become clear that even when a
computer is handling encrypted data, its memory-access patterns—the
frequency with which it stores and accesses data at different memory
addresses—can betray a shocking amount of private information.

At the International Symposium on Computer Architecture in June, MIT
researchers described a new type of secure hardware component, dubbed
Ascend, that would disguise a server's memory-access patterns, making
it impossible for an attacker to infer anything about the data being
stored. Ascend also thwarts another type of attack, known as a timing
attack, which attempts to infer information from the amount of time that
computations take.

Computational trade-off

Similar designs have been proposed in the past, but they've generally
traded too much computational overhead for security. "This is the first
time that any hardware design has been proposed—it hasn't been built
yet—that would give you this level of security while only having about a
factor of three or four overhead in performance," says Srini Devadas,
the Edwin Sibley Webster Professor of Electrical Engineering and
Computer Science, whose group developed the new system. "People
would have thought it would be a factor of 100."

The "trivial way" of obscuring memory-access patterns, Devadas
explains, would be to request data from every address in the

2/5

https://phys.org/tags/computer/
https://phys.org/tags/attacker/

memory—whether a memory chip or a hard drive—and throw out
everything except the data stored at the one address of interest. But that
would be much too time-consuming to be practical.

What Devadas and his collaborators—graduate students Ling Ren,
Xiangyao Yu and Christopher Fletcher, and research scientist Marten
van Dijk—do instead is to arrange memory addresses in a data structure
known as a "tree." A family tree is a familiar example of a tree, in which
each "node" (in this example, a person's name) is attached to only one
node above it (the node representing the person's parents) but may
connect to several nodes below it (the person's children).

With Ascend, addresses are assigned to nodes randomly. Every node lies
along some "path," or route through the tree, that starts at the top and
passes from node to node, without backtracking, until arriving at a node
with no further connections. When the processor requires data from a
particular address, it sends requests to all the addresses in a path that
includes the one it's really after.

To prevent an attacker from inferring anything from sequences of
memory access, every time Ascend accesses a particular memory
address, it randomly swaps that address with one stored somewhere else
in the tree. As a consequence, accessing a single address multiple times
will very rarely require traversing the same path.

Less computation to disguise an address

By confining its dummy requests to a single path, rather than sending
them to every address in memory, Ascend exponentially reduces the
amount of computation required to disguise an address. In a separate
paper, which is as-yet unpublished but has been posted online, the
researchers prove that querying paths provides just as much security as
querying every address in memory would.

3/5

Ascend also protects against timing attacks. Suppose that the
computation being outsourced to the cloud is the mammoth task of
comparing a surveillance photo of a criminal suspect to random photos
on the Web. The surveillance photo itself would be encrypted, and thus
secure from prying eyes. But spyware in the cloud could still deduce
what public photos it was being compared to. And the time the
comparisons take could indicate something about the source photos:
Photos of obviously different people could be easy to rule out, but
photos of very similar people might take longer to distinguish.

So Ascend's memory-access scheme has one final wrinkle: It sends
requests to memory at regular intervals—even when the processor is
busy and requires no new data. That way, attackers can't tell how long
any given computation is taking.

The paper is titled "Design space exploration and optimization of path
oblivious RAM in secure processors."

 More information: Paper (PDF): "Design space exploration and
optimization of path oblivious RAM in secure processors"

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: New hardware design makes data encryption more secure by disguising cloud servers'
memory-access patterns (2013, July 2) retrieved 26 April 2024 from
https://phys.org/news/2013-07-hardware-encryption-disguising-cloud-servers.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private

4/5

http://people.csail.mit.edu/devadas/pubs/oram-isca13.pdf
http://people.csail.mit.edu/devadas/pubs/oram-isca13.pdf
http://web.mit.edu/newsoffice/
https://phys.org/news/2013-07-hardware-encryption-disguising-cloud-servers.html

study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://www.tcpdf.org

