Study looks beyond averages to track variability in a bacterial population

July 29, 2013, University of Illinois at Urbana-Champaign

As a result of the variable nature of gene expression, genetically identical cells inhabiting the same environment can vary significantly in their numbers of key enzymes, which in turn results in strikingly different cellular behaviors. This cell-to-cell variability can manifest in the form of anything from differences in growth rate, to the specific biochemical pathways used and the types of metabolic byproducts produced by each cell.

Incorporating data from studies of gene regulation and protein distributions in single cells, the research group of University of Illinois chemistry professor Zaida Luthey-Schulten was able to identify several behavioral subtypes within a modeled population. The researchers' computer model predicts emissions of metabolic byproducts and pathway selection to balance energy (glycolysis pathway) and protein costs (ED pathway) as a function of growth. The research also suggests that tracking the behavior of a few genes "may be sufficient to capture most of the metabolic variability of the entire population," the authors wrote.

"Our investigations provide the first calculations linking variation in specific pathway usages to the growth rate distribution of a ," Luthey-Schulten said. "By looking beyond the average growth rate of a colony, our work provides insight into the different strategies used by bacteria for survival. "

Explore further: Scientists find potential loophole in pancreatic cancer defenses

More information: Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population, www.pnas.org/cgi/doi/10.1073/pnas.1222569110

Related Stories

Hippo pathway to better cancer treatment?

July 11, 2013

Researchers at the University of British Columbia have discovered a potential new pathway to treat cancer by asking some odd questions about the size of animals.

Researchers make the leap to whole-cell simulations

March 30, 2011

Researchers have built a computer model of the crowded interior of a bacterial cell that – in a test of its response to sugar in its environment – accurately simulates the behavior of living cells.

Metabolic molecule drives growth of aggressive brain cancer

June 13, 2013

(Medical Xpress)—A study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) has identified an abnormal ...

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

GLUT5 fluorescent probe fingerprints cancer cells

April 19, 2018

Determining the presence of cancer, as well as its type and malignancy, is a stressful process for patients that can take up to two weeks to get a diagnosis. With a new bit of technology—a sugar-transporting biosensor—researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.