Swift satellite produces best ultraviolet maps of the nearest galaxies

June 3, 2013
Nearly a million ultraviolet sources appear in this mosaic of the Large Magellanic Cloud, which was assembled from 2,200 images taken by Swift's Ultraviolet/Optical Telescope. The 160-megapixel image required a cumulative exposure of 5.4 days. The image includes light from 1,600 to 3,300 angstroms -- UV wavelengths largely blocked by Earth's atmosphere -- and has an angular resolution of 2.5 arcseconds at full size. The LMC is about 14,000 light-years across. Slide your cursor over the image to compare the galaxy's appearance in optical light with this ultraviolet portrait. Credit: UV image credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State) Visible image credit: Axel Mellinger, Central Michigan Univ.

(Phys.org) —Astronomers at NASA and Pennsylvania State University have used NASA's Swift satellite to create the most detailed ultraviolet light surveys ever of the Large and Small Magellanic Clouds, the two closest major galaxies.

"We took thousands of images and assembled them into seamless portraits of the main body of each galaxy, resulting in the highest-resolution surveys of the Magellanic Clouds at ," said Stefan Immler, who proposed the program and led NASA's contribution from the agency's Goddard Space Flight Center in Greenbelt, Md.

Immler presented a 160-megapixel mosaic image of the (LMC) and a 57-megapixel mosaic image of the (SMC)at the 222nd meeting in Indianapolis on Monday.

The new images reveal about 1 million ultraviolet sources in the LMC and about 250,000 in the SMC. The images include light ranging from 1,600 to 3,300 angstroms, which is a range of UV wavelengths largely blocked by Earth's atmosphere.

"Prior to these images, there were relatively few UV observations of these galaxies, and none at high resolution across such wide areas, so this project fills in a major missing piece of the scientific puzzle," said Michael Siegel, lead scientist for Swift's Ultraviolet/ (UVOT) at the Swift at the university in State College, Pa.

The video will load shortly
New surveys conducted by NASA's Swift provide the most detailed overviews ever captured in ultraviolet light of the Large and Small Magellanic Clouds, the two closest major galaxies to our own. Swift team member Stefan Immler, who proposed the imaging project, narrates this quick tour. Credit: NASA's Goddard Space Flight Center

The LMC and SMC lie about 163,000 light-years and 200,000 light-years away, respectively, and orbit each other as well as our own . The LMC is about one-tenth the size of the Milky Way and contains only 1 percent of the Milky Way's mass. The SMC is half the size of the LMC and contains about two-thirds of its mass.

Despite their modest sizes, the galaxies loom large in the sky because they are so close to us. Both extend far beyond the UVOT's field of view, which meant thousands of images were needed in order to cover both galaxies in three ultraviolet colors centered at wavelengths of 1,928 angstroms, 2,246 angstroms, and 2,600 angstroms.

This visible light mosaic shows the Large Magellanic Cloud and Small Magellanic Cloud. Separated by about 21 degrees, the two galaxies are readily visible from the Southern Hemisphere as faint, glowing patches in the night sky. The LMC and SMC are the closest major galaxies to our own and lie about 163,000 and 200,000 light-years away, respectively. Credit: Axel Mellinger, Central Michigan Univ.

Viewing in the ultraviolet allows astronomers to suppress the light of normal stars like the sun, which are not very bright at such higher energies, and provides a clearer picture of the hottest stars and star-formation regions. No telescope other than UVOT can produce such high-resolution wide-field multicolor surveys in the ultraviolet. Swift's wide-field imaging capabilities provide a powerful complement to the deeper, but much narrower-field imaging power of NASA's Hubble Space Telescope.

To produce the 160-megapixel LMC mosaic, Swift's UVOT acquired 2,200 snapshots for a cumulative exposure of 5.4 days. The 57-megapixel SMC image comprises 656 individual images with a total exposure of 1.8 days.

Both have an angular resolution of 2.5 arc seconds, which is a measure of their sharpness. Sources separated by this angle, which is equivalent to the size of a dime seen from 1mile away, are visible as distinct objects.

The Swift mosaic of the Small Magellanic Cloud contains about 250,000 ultraviolet sources. The 57-megapixel image was assembled from 656 separate snapshots. The image has a total exposure time of 1.8 days, an angular resolution of 2.5 arcseconds at full size, and maps UV light at wavelengths between 1,600 and 3,300 angstroms. The SMC is about 7,000 light-years across. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)

"With these mosaics, we can study how stars are born and evolve across each galaxy in a single view, something that's very difficult to accomplish for our own galaxy because of our location inside it," Immler said.

The Large and Small Magellanic Clouds are readily visible from the Southern Hemisphere as faint, glowing patches in the night sky. The galaxies are named after Ferdinand Magellan, the Portuguese explorer who in 1519 led an expedition to sail around the world. He and his crew were among the first Europeans to sight the objects.

Explore further: An image gallery gift from Swift satellite

Related Stories

An image gallery gift from Swift satellite

December 28, 2012

(Phys.org)—Of the three telescopes carried by NASA's Swift satellite, only one captures cosmic light at energies similar to those seen by the human eye. Although small by the standards of ground-based observatories, Swift's ...

Astronomers' model sheds light on microlensing event

October 30, 2012

One of the closest galaxies to the Milky Way almost got away with theft. However, new simulations convicted the Large Magellanic Cloud (LMC) of stealing stars from its neighbor, the Small Magellanic Cloud (SMC). And the crucial ...

Hubble sees the remains of a star gone supernova

May 3, 2013

(Phys.org) —These delicate wisps of gas make up an object known as SNR B0519-69.0, or SNR 0519 for short. The thin, blood-red shells are actually the remnants from when an unstable progenitor star exploded violently as ...

A hidden treasure in the Large Magellanic Cloud

January 17, 2013

(Phys.org)—Nearly 200 000 light-years from Earth, the Large Magellanic Cloud, a satellite galaxy of the Milky Way, floats in space, in a long and slow dance around our galaxy. Vast clouds of gas within it slowly collapse ...

Image: Hubble peeks inside a stellar cloud

April 23, 2012

(Phys.org) -- These bright stars shining through what looks like a haze in the night sky are part of a young stellar grouping in one of the largest known star formation regions of the Large Magellanic Cloud (LMC), a dwarf ...

Recommended for you

Tracing aromatic molecules in the early universe

March 22, 2017

A molecule found in car engine exhaust fumes that is thought to have contributed to the origin of life on Earth has made astronomers heavily underestimate the amount of stars that were forming in the early Universe, a University ...

Sand flow theory could explain water-like streaks on Mars

March 22, 2017

(Phys.org)—A team of researchers from France and the Slovak Republic has proposed a theory to explain the water-like streaks that appear seasonally on the surface of Mars, which do not involve water. In their paper published ...

Giant magnetic fields in the universe

March 22, 2017

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), ...

Ice in Ceres' shadowed craters linked to tilt history

March 22, 2017

Dwarf planet Ceres may be hundreds of millions of miles from Jupiter, and even farther from Saturn, but the tremendous influence of gravity from these gas giants has an appreciable effect on Ceres' orientation. In a new study, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.