The science of sculpture, nano-style

June 14, 2013 by Angela Herring
The science of sculpture, nano-style
A droplet of liquefied metal collects vaporized silicon particles from the surrounding environment, spurring the synthesis of a silicon nano whisker that has a hexagonal cross section. Image courtesy of Moneesh Upmanyu.

( —The next breakthrough in highly efficient battery technologies and solar cells may very well be nanoscopic crystals of silicon assembled like skyscrapers on wafer-scale substrates. An important route for growth of these nanoscale "whiskers"—or nanowires—involves alloyed metal droplets.

Moneesh Upmanyu, an associate professor in the Department of Mechanical and Industrial Engineering, has been using computational tools to understand the atomic-scale interactions between these droplets and the growth of nanowires.

"The droplet is able to multitask on several levels, and that is the beauty of this growth technique," said Upmanyu. "It catalyzes and then absorbs the growing species from the surrounding vapor, gets saturated, and eventually guides the of the growing nanowire, not unlike a jet that leaves a crystalline nanowire in its wake."

The technique was developed decades ago for growing silicon "whiskers" that used a droplet of liquefied metal to trick vaporized into solidifying as . The synthetic route is now widely used for growing nanowires for a variety of technologically important materials.

"The droplet ultimately gives absolute control on the growth form, yet no one knew exactly how it sculpts the nanowires into specific shapes and sizes," said Hailong Wang, a former post-doctoral student within Upmanyu's group and the first author on a recently published paper on this research in the journal Nature Communications. The study was performed in collaboration with researchers at Lawrence Livermore National Laboratory and Colorado School of Mines.

"There was no understanding at the atomic scale, mostly assumptions," added Upmanyu."Unmasking them is critical as it allows us to control the growth form and, as is the case at these small scales, form invariably dictates function.

The researchers discovered that the droplet does not uniformly wrap around the nanowire. Rather, it coaxes the growing end of the nanowire to facet into unevenly beveled edges. "This collection of truncated edges serves the same purpose as the Archimedean spirals that facilitate the growth of macroscale crystals, and that is a key part of the puzzle for large-scale growth of these crystals with prescribed form," Upmanyu said. As the droplet collects the vaporized particles in its liquid state, they begin to saturate the system and precipitate out to form the solid wire. The precipitation is much faster on the beveled edges, which ultimately lead to layer-by-layer growth of the nanowire.

With this new understanding, researchers can begin to develop very specific crystalline structures—ranging from efficient solar panels to LED lighting—at relatively inexpensive price points. Upmanyu has already begun collaborating with other researchers at Northeastern, from physicists to biologists, to "sculpt" with particular properties.

"A fundamental understanding of nanocrystal growth remains a challenge, as the key processes require an interdisciplinary effort," Upmanyu said. "Besides cutting-edge and algorithms, it involves elements of growth chemistry, alloy metallurgy, and surface science."

Explore further: World's first large(wafer)-scale production of III-V semiconductor nanowire

More information:

Related Stories

Major advance in understanding how nanowires form

March 25, 2011

New insights into why and how nanowires take the form they do will have profound implications for the development of future electronic components. PhD student Peter Krogstrup from the Nano-Science Center at the Niels Bohr ...

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.