

How computers can learn better

June 3 2013, by Larry Hardesty

Reinforcement learning is a technique, common in computer science, in
which a computer system learns how best to solve some problem through
trial-and-error. Classic applications of reinforcement learning involve
problems as diverse as robot navigation, network administration and
automated surveillance.

1/6

At the Association for Uncertainty in Artificial Intelligence's annual
conference this summer, researchers from MIT's Laboratory for
Information and Decision Systems (LIDS) and Computer Science and
Artificial Intelligence Laboratory will present a new reinforcement-
learning algorithm that, for a wide range of problems, allows computer
systems to find solutions much more efficiently than previous algorithms
did.

The paper also represents the first application of a new programming
framework that the researchers developed, which makes it much easier
to set up and run reinforcement-learning experiments. Alborz
Geramifard, a LIDS postdoc and first author of the new paper, hopes
that the software, dubbed RLPy (for reinforcement learning and Python,
the programming language it uses), will allow researchers to more
efficiently test new algorithms and compare algorithms' performance on
different tasks. It could also be a useful tool for teaching computer-
science students about the principles of reinforcement learning.

Geramifard developed RLPy with Robert Klein, a master's student in
MIT's Department of Aeronautics and Astronautics. RLPy and its source
code were both released online in April.

Every reinforcement-learning experiment involves what's called an
agent, which in artificial-intelligence research is often a computer
system being trained to perform some task. The agent might be a robot
learning to navigate its environment, or a software agent learning how to
automatically manage a computer network. The agent has reliable
information about the current state of some system: The robot might
know where it is in a room, while the network administrator might know
which computers in the network are operational and which have shut
down. But there's some information the agent is missing—what obstacles
the room contains, for instance, or how computational tasks are divided
up among the computers.

2/6

http://acl.mit.edu/RLPy/install_8txt.html#the_install_page
https://phys.org/tags/computer+network/

Finally, the experiment involves a "reward function," a quantitative
measure of the progress the agent is making on its task. That measure
could be positive or negative: The network administrator, for instance,
could be rewarded for every failed computer it gets up and running but
penalized for every computer that goes down.

The goal of the experiment is for the agent to learn a set of policies that
will maximize its reward, given any state of the system. Part of that
process is to evaluate each new policy over as many states as possible.
But exhaustively canvassing all of the system's states could be
prohibitively time-consuming.

Consider, for instance, the network-administration problem. Suppose
that the administrator has observed that in several cases, rebooting just a
few computers restored the whole network. Is that a generally applicable
solution?

One way to answer that question would be to evaluate every possible
failure state of the network. But even for a network of only 20 machines,
each of which has only two possible states—working or not—that would
mean canvassing a million possibilities.

Faced with such a combinatorial explosion, a standard approach in
reinforcement learning is to try to identify a set of system "features" that
approximate a much larger number of states. For instance, it might turn
out that when computers 12 and 17 are down, it rarely matters how many
other computers have failed: A particular reboot policy will almost
always work. The failure of 12 and 17 thus stands in for the failure of
12, 17 and 1; of 12, 17, 1 and 2; of 12, 17 and 2, and so on.

Geramifard—along with Jonathan How, the Richard Cockburn
Maclaurin Professor of Aeronautics and Astronautics, Thomas Walsh, a
postdoc in How's lab, and Nicholas Roy, an associate professor of

3/6

aeronautics and astronautics—developed a new technique for identifying
pertinent features in reinforcement-learning tasks. The algorithm first
builds a data structure known as a tree—kind of like a family-tree
diagram—that represents different combinations of features. In the case
of the network problem, the top layer of the tree would be individual
machines, the next layer would be combinations of two machines, the
third layer would be combinations of three machines, and so on.

The algorithm then begins investigating the tree, determining which
combinations of features dictate a policy's success or failure. The
relatively simple key to its efficiency is that when it notices that certain
combinations consistently yield the same outcome, it stops exploring
them. For instance, if it notices that same policy seems to work
whenever machines 12 and 17 have failed, it stops considering
combinations that include 12 and 17 and begins looking for others.

Geramifard believes that this approach captures something about how
human beings learn to perform new tasks. "If you teach a small child
what a horse is, at first it might think that everything with four legs is a
horse," he says. "But when you show it a cow, it learns to look for a
different feature—say, horns." In the same way, Geramifard explains,
the new algorithm identifies an initial feature on which to base
judgments and then looks for complementary features that can refine the
initial judgment.

RLPy allowed the researchers to quickly test their new algorithm against
a number of others. "Think of it as like a Lego set," Geramifard says.
"You can snap one module out and snap another one in its place."

In particular, RLPy comes with a number of standard modules that
represent different machine-learning algorithms; different problems
(such as the network-administration problem, some standard control-
theory problems that involve balancing pendulums, and some standard

4/6

https://phys.org/tags/reinforcement+learning/

surveillance problems); different techniques for modeling the computer
system's environment; and different types of agents.

It also allows anyone familiar with the Python programming language to
build new modules. They just have to be able to hook up with existing
modules in prescribed ways.

Geramifard and his colleagues found that in computer simulations, their
new algorithm evaluated policies more efficiently than its predecessors,
arriving at more reliable predictions in one-fifth the time.

RLPy can be used to set up experiments that involve computer
simulations, such as those that the MIT researchers evaluated, but it can
also be used to set up experiments that collect data from real-world
interactions. In one ongoing project, for instance, Geramifard and his
colleagues plan to use RLPy to run an experiment involving an
autonomous vehicle learning to navigate its environment. In the project's
initial stages, however, he's using simulations to begin building a battery
of reasonably good policies. "While it's learning, you don't want to run it
into a wall and wreck your equipment," he says.

 More information: Paper: "Batch-iFDD for Representation Expansion
in Large MDPs" (PDF)

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: How computers can learn better (2013, June 3) retrieved 20 April 2024 from
https://phys.org/news/2013-06-how-computers-can-learn-better.html

5/6

http://people.csail.mit.edu/agf/Files/13UAI-BatchiFDD.pdf
http://web.mit.edu/newsoffice/
https://phys.org/news/2013-06-how-computers-can-learn-better.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://www.tcpdf.org

