Air bubbles could be the secret to artificial skin

Air bubbles could be the secret to artificial skin
Credit: 2013 EPFL
(Phys.org) —Using foam substrates, EPFL scientists were able to make a flexible electronic circuit board. This discovery could lead to the creation of deformable and stretchable circuits.

How can you turn a material that is essentially rigid and breakable into something that can flex and bend? This is the problem that Stéphanie Lacour, Professor of the Bertarelli Foundation Chair at EPFL, is currently working on. Her goal is to be able to make circuit boards that are flexible enough to be integrated into . Connected to the nervous system, these could become a true sense organ, allowing people to experience touches, tickles, and pain.

Lacour recently made a major step forward in her research, which has recently been published in the journal Advanced Materials. In experiments using various deformable materials, her team discovered a new kind of platform upon which to build circuits: elastomeric foams. These foams are used in and products such as shoes, mattresses and bandages. Her team showed that a metallic film placed on a substrate can be stretched in a reversible manner, without disrupting its properties.

"Up to now, to find an appropriate substrate, we mainly worked on full and uniform ," she explains. "Now, we're exploring new kinds of flexible, but heterogeneous, substrates in the form of foams. A more or less dense network of inserted in an elastic matrix lets us modulate the elasticity of the substrate."

Localized cracks

On a uniform elastomeric substrate, traction tests revealed the creation of micro-fissures in the metallic layer, which would eventually result in the rupture of the conducting network. But with foam substrates, these cracks only occurred above the air bubbles. "Between the bubbles, the metal remained intact. The conducting network is thus maintained and can function," she explains. "Our measurements showed that we could achieve a level of elasticity over 100% without disrupting the network. These metallic pathways built upon foam could thus be used as electrodes, sensors or interconnections for the electronic skin that we're developing."

At the same time that she's pursuing this area of research, Lacour is also planning to test the flexibility of other electronic materials on pliable foam as well as various commercially available foams, with the objective of developing an electronic circuit board that is as flexible as "natural" skin.


Explore further

Checkerboard surface put to flexible electronics test

Journal information: Advanced Materials

Citation: Air bubbles could be the secret to artificial skin (2013, June 7) retrieved 22 April 2019 from https://phys.org/news/2013-06-air-secret-artificial-skin.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Jun 10, 2013
I presume this artificial skin is capable of detecting pressure as well, otherwise its either touching or not. If I gently grasp a glass and lift up I will not pick up the glass and if I grasp a glass too strongly it will break.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more