The tulip tree reveals mitochondrial genome of ancestral flowering plant

April 14, 2013
The extraordinary level of conservation of the tulip tree (Liriodendron tulipifera) mitochondrial genome has redefined our interpretation of evolution of the angiosperms (flowering plants), finds research in biomed Central's open access journal BMC Biology. Credit: Gary Coté

The extraordinary level of conservation of the tulip tree (Liriodendron tulipifera) mitochondrial genome has redefined our interpretation of evolution of the angiosperms (flowering plants), finds research in biomed Central's open access journal BMC Biology. This beautiful 'molecular fossil' has a remarkably slow mutation rate meaning that its mitochondrial genome has remained largely unchanged since the dinosaurs were roaming the earth.

Evolutionary studies make used of mitochondrial (powerhouse) genomes to identify maternal lineages, for example the human mitochondrial Eve. Among plants, the lack of genomic data from lineages which split away from the main evolutionary branch early on has prevented researchers from reconstructing patterns of genome evolution.

L. tulipifera is native to North America. It belongs to a more unusual group of dicotyledons (plants with two seed leaves) known as magnoliids, which are thought to have diverged early in the evolution of flowing plants.

By sequencing the of L. tulipifera, researchers from Indiana University and University of Arkansas discovered that its mitochondrial genome has one of the slowest silent mutation rates (ones which do not affect gene function) of any known genome. Compared to humans the rate is 2000 times slower – the amount of genomic change in a single human generation would take 50,000 years for the tulip tree. The rate is even slower for magnolia trees, taking 130,000 years for the same amount of mitochondrial genomic change.

Ancestral and tRNA genes have been preserved and L. tulipifera still contains many genes lost during the subsequent 200 million years of evolution of . In fact one tRNA gene is no longer present in any other sequenced angiosperm.

Prof Jeffrey Palmer who led this study explained, "By using the tulip tree as a guide we are able to estimate that the ancestral angiosperm mitochondrial genome contained 41 , 14 tRNA genes, seven tRNA genes sequestered from chloroplasts, and more than 700 sites of protein editing. Based on this, it appears that the genome has been more-or-less frozen in time for millions and millions of years."

Explore further: Inheritance of mitochondrial disease determined when mother is still an embryo

More information: The "fossilized" mitochondrial genome of Liriodendron tulipifera: Ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate, Aaron O Richardson, Danny W Rice, Gregory J Young, Andrew J Alverson and Jeffrey D Palmer, BMC Biology 2013, 11:29 doi:10.1186/1741-7007-11-29

Commentary: Mitochondrial genomes as living 'fossils', Ian Small, BMC Biology 2013, 11:30 doi:10.1186/1741-7007-11-30

Related Stories

Selaginella genome adds piece to plant evolutionary puzzle

May 5, 2011

(PhysOrg.com) -- A Purdue University-led sequencing of the Selaginella moellendorffii (spikemoss) genome - the first for a non-seed vascular plant - is expected to give scientists a better understanding of how plants of all ...

Mothers curse linked to male infertility

May 16, 2011

(Medical Xpress) -- Researchers have discovered the first real evidence of the 'mother's curse' and its connection to male infertility due to genetic mutations in mitochondria. Led by Dr. Damian Dowling from Monash University ...

Quick and easy diagnosis for mitochondrial disorders

October 22, 2009

Soon you could be genetically screened for mitochondrial disorders quickly and comprehensively. Research published in BioMed Central's open access journal, Genome Medicine, outlines an innovative clinical diagnostic test ...

Recommended for you

Cloning thousands of genes for massive protein libraries

June 26, 2017

Discovering the function of a gene requires cloning a DNA sequence and expressing it. Until now, this was performed on a one-gene-at-a-time basis, causing a bottleneck. Scientists at Rutgers University-New Brunswick in collaboration ...

Discovery of a new mechanism for bacterial division

June 26, 2017

Most rod-shaped bacteria divide by splitting into two around the middle after their DNA has replicated safely and segregated to opposite ends of the cell. This seemingly simple process actually demands tight and precise coordination, ...

Previously unknown extinction of marine megafauna discovered

June 26, 2017

Over two million years ago, a third of the largest marine animals like sharks, whales, sea birds and sea turtles disappeared. This previously unknown extinction event not only had a consid-erable impact on the earth's historical ...

Lending plants a hand to survive drought

June 26, 2017

The findings have helped some plants survive 50 percent longer in drought conditions, and could eventually benefit major crops such as barley, rice and wheat, which are crucial to world food supplies.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Shakescene21
5 / 5 (2) Apr 14, 2013
I'm glad to see this interesting tree, L. tulipfera, called by the appropriate name "tulip tree". In the lumber business it is usually called "yellow poplar", which is strange because it is a magnoliid not a poplar. (The wood apparently is similar to poplar wood.) Another common name for this tree is "tulip poplar", which is also misleading.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.