When pollution gets a whiff of trees: City and tree emissions mix it up causing poor air quality

April 23, 2013
Organic aerosols from tree emissions increase when mixed with man-made sources, impacting the climate.

It's easy to visualize particles and gases from vehicle exhaust or burning trash wafting into the atmosphere. It's harder to envision similar gases and minute particles emitted from trees and plants in the forest. What these two have in common is carbon. According to a multi-institutional team of scientists led by Pacific Northwest National Laboratory, when polluted city emissions travel miles away, they eventually mix with forest emissions. The result is the addition of new carbon-containing particles which scientists call secondary organic aerosols. These atmospheric particles can have a large impact air quality, visibility, human health and ultimately, the climate.

Secondary are formed through complex physical and chemical interactions between gases and pre-existing particles in the atmosphere. They are very important to understand because 30 to 90 percent of the total particle mass in the atmosphere are organic, or carbon-containing. Scientists are working to describe the various sources of atmospheric carbon and how they mix and react with each other to understand their effect on climate. Accurately predicting how these particles form will help scientists and policy makers understand and predict future .

This study used measurements gathered during the Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaign. During CARES, scientists led an intensive month-long field study to research the evolution and effects of and gases emitted from various sources such as exhaust fumes, wildfires and agricultural burning sources. Using the collected data, the team evaluated the mix of emissions from the city area of Sacramento, Calif. and from the Sierra Nevada forests.

Researchers took daily ground and airborne measurements from 22 research flights using the U.S. Department of Energy's Gulfstream-1 which holds sophisticated atmospheric sensing equipment. The sampling showed the Sacramento polluted air was transported miles away, producing increased levels of secondary organic aerosols in the areas where city and tree emissions mixed.

"This process is a result of human activities and is not yet well understood. The level of organic aerosol produced from mixes of city and tree emissions is greater than we expected, which may impact the way we look at future climate change," said lead author and PNNL atmospheric scientist Dr. John Shilling.

Scientists are planning additional research and modeling to measure the effects of organic aerosols on the climate. They will incorporate their findings into global research models to better understand possible impacts on the climate, at both regional and global levels.

Explore further: A chemistry tale of two carbons: Field study of urban, natural emissions interacting to affect climate change

More information: Shilling, J. et al. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign, Atmospheric Chemistry and Physics 13, 2091-2113. DOI:10.5194/acp-13-2091-2013

Related Stories

Climate sensitivity greater than previously believed

December 20, 2011

Many of the particles in the atmosphere are produced by the natural world, and it is possible that plants have in recent decades reduced the effects of the greenhouse gases to which human activity has given rise. One consequence ...

Atmospheric scientists start monthlong air sampling campaign

June 2, 2010

More than 60 scientists from a dozen institutions have converged on this urban area to study how tiny particles called aerosols affect the climate. Sending airplanes and weather balloons outfitted with instruments up in the ...

CSU scientist simplifies aerosols for modeling

May 26, 2010

The large number of tiny organic aerosols floating in the atmosphere - emitted from tailpipes and trees alike - share enough common characteristics as a group that scientists can generalize their makeup and how they change ...

Recommended for you

The wind sublimates snowflakes in Antarctica

September 25, 2017

Researchers have observed and characterized a weather process that was not previously known to occur in Antarctica's coastal regions. It turns out that the katabatic winds that blow from the interior to the margins of the ...

Diamonds show Earth still capable of 'superhot' surprises

September 22, 2017

Diamonds may be 'forever,' but some may have formed more recently than geologists thought. A study of 26 diamonds, formed under extreme melting conditions in the Earth's mantle, found two populations, one of which has geologically ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.