

Can control theory make software better?

March 19 2013, by Larry Hardesty

The oscillation of a pendulum offers the simplest example of a Lyapunov
function, a central concept in control theory. The pendulum's loss of energy with
each swing guarantees that it won't lurch into a less stable state.

"Formal verification" is a set of methods for mathematically proving that

1/5

a computer program does what it's supposed to do. It's universal in
hardware design and in the development of critical control software that
can't tolerate bugs; it's common in academic research; and it's beginning
to make inroads in commercial software.

In the latest issue of the journal IEEE Transactions on Automatic Control,
researchers from MIT's Laboratory for Information and Decision
Systems (LIDS) and a colleague at Georgia Tech show how to apply
principles from control theory—which analyzes dynamical systems
ranging from robots to power grids—to formal verification. The result
could help computer scientists expand their repertoire of formal-
verification techniques, and it could be particularly useful in the area of
approximate computation, in which designers of computer systems trade
a little bit of computational accuracy for large gains in speed or power
efficiency.

In particular, the researchers adapted something called a Lyapunov
function, which is a mainstay of control theory. The graph of a standard
Lyapunov function slopes everywhere toward its minimum value: It can
be thought of as looking kind of like a bowl. If the function
characterizes the dynamics of a physical system, and the minimum value
represents a stable state of the system, then the curve of the graph
guarantees that the system will move toward greater stability.

"The most basic example of a Lyapunov function is a pendulum
swinging and its energy decaying," says Mardavij Roozbehani, a
principal research scientist in LIDS and lead author on the new paper.
"This decay of energy becomes a certificate of stability, or 'good
behavior,' of the pendulum system."

Of course, most dynamical systems are more complex than pendulums,
and finding Lyapunov functions that characterize them can be difficult.
But there's a large literature on Lyapunov functions in control theory,

2/5

https://phys.org/tags/dynamical+systems/
https://phys.org/tags/power+grids/
https://phys.org/tags/computer+scientists/
http://phys.org/news/2012-05-mathematical-framework-formalizes-oddball-techniques.html
https://phys.org/tags/power+efficiency/
https://phys.org/tags/power+efficiency/
https://phys.org/tags/good+behavior/
https://phys.org/tags/good+behavior/
https://phys.org/tags/control+theory/

and Roozbehani and his colleagues are hopeful that much of it will prove
applicable to software verification.

Skirting dangers

In their new paper, Roozbehani and his coauthors—MIT professor of
electrical engineering Alexandre Megretski and Eric Feron, a professor
of aerospace software engineering at Georgia Tech—envision a
computer program as a set of rules for navigating a space defined by the
variables in the program and the memory locations of the program
instructions. Any state of the program—any values for the variables
during execution of a particular instruction—constitutes a point in that
space. Problems with a program's execution, such as dividing by zero or
overloading the memory, can be thought of as regions in the space.

In this context, formal verification is a matter of demonstrating that the
program will never steer its variables into any of these danger zones. To
do that, the researchers introduce an analogue of Lyapunov functions
that they call Lyapunov invariants. If the graph of a Lyapunov invariant
is in some sense bowl shaped, then the task is to find a Lyapunov
invariant such that the initial values of the program's variables lie in the
basin of the bowl, and all of the danger zones lie farther up the bowl's
walls. Veering toward the danger zones would then be analogous to a
pendulum's suddenly swinging out farther than it did on its previous
swing.

In practice, finding a Lyapunov invariant with the desired properties
means systematically investigating different classes of functions. There's
no general way to predict in advance what type of function it will be—or
even that it exists. But Roozbehani imagines that, if his and his
colleagues' approach catches on, researchers will begin to identify
algorithms that lend themselves to particular types of Lyapunov
invariants, as has happened with control problems and Lyapunov

3/5

functions.

Fuzzy thinking

Moreover, many of the critical software systems that require formal
verification implement control systems designed using Lyapunov
functions. "So there are intuitive reasons to believe that, at least for
control-system software, these methods will work well," Roozbehani
says.

Roozbehani is also enthusiastic about possible applications in
approximate computation. As he explains, many control systems are
based on mathematical models that can't capture all of the complexity of
real dynamical systems. So control theorists have developed analytic
methods that can account for model inaccuracies and provide guarantees
of stability even in the presence of uncertainty. Those techniques,
Roozbehani argues, could be perfectly suited for verifying code that
exploits approximate computation.

"Computer scientists are not used to thinking about robustness of
software," says George Pappas, chair of the Department of Electrical
and Systems Engineering at the University of Pennsylvania. "This is the
first work that is formalizing the notion of robustness for software. It's a
paradigm shift, from the more exhaustive, combinatorial view of
checking for bugs in software, to a view where you try to see how robust
your software is to changes in the input or the internal state of
computation and so on."

"The idea may not apply in all possible kinds of software," Pappas
cautions. "But if you're thinking about software that implements, say,
controller or sensor functionality, I think there's no question that these
types of ideas will have a lot of impact."

4/5

https://phys.org/tags/software/

 More information: Paper: "Optimization of Lyapunov Invariants in
Verification of Software Systems"

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Can control theory make software better? (2013, March 19) retrieved 25 April 2024
from https://phys.org/news/2013-03-theory-software.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6416001
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6416001
http://web.mit.edu/newsoffice/
https://phys.org/news/2013-03-theory-software.html
http://www.tcpdf.org

