Why sea-faring mammals need to be larger than land lubbers

March 19, 2013

(Phys.org) —Ever notice you get cold faster when you're wet? That's why whales are so much bigger than elephants, according to SFI External Professor Aaron Clauset in a recent paper published in the journal PLoS One that examines what might have caused mammalian species to evolve to the sizes they did.

Clauset, a computer scientist at the University of Colorado Boulder, set out to understand why a few land-loving reach elephantine proportions but the most common mammal size is about that of a rat. One popular theory, the reproductive power hypothesis, argues that mammalian species have an ideal size but vary in size because of a complicated mix of competition and other pressures.

Working with former SFI researcher Doug Erwin, Clauset devised another explanation based on simple principles. First, mammals can't be too small, or they lose heat faster than they produce it. Second, as they evolve, species tend to grow larger over time, but the larger they get, the more susceptible they are to extinction—what Clauset calls "a macroevolutionary of death."

Those principles led to a mathematical model of land mammals' sizes with just three uncertain parameters, two of which they already knew. Thermodynamics and a little biology determine how can be, and the fossil record reveals how fast species grow over time. That left the extinction rate for large mammals, which Clauset and Erwin estimated by fitting their model to data on living mammals.

"We got a really good fit" for terrestrial mammals, Clauset says. Still, they couldn't explain why the smallest sea-faring mammal, the Franciscana dolphin, is 18,000 times larger than the smallest land mammal, the two-gram shrew.

The difference, Clauset explains, is water. Because water transports heat faster than air, sea-faring mammals have to be much larger to survive—at least 80 pounds. Now Clauset could predict ' sizes, except this time there was no need to estimate anything from data. Using the 80-pound minimum size with the species growth rate and the extinction rate he'd estimated for , he could make a prediction without any wiggle room. The model is "either right or it's not," he says.

Right-or-wrong predictions like that are rare, but Clauset's prediction is statistically indistinguishable from real-world species size data. That, he says, suggests "a universal process for all mammals."

He adds that the conveyor-belt aspect of the model may explain something else in the fossil record—cycles of the largest mammal species getting larger and larger, eventually dying off, only to be replaced by another growing species.

Explore further: Predicting the distribution of creatures great and small

More information: www.plosone.org/article/info%3 … journal.pone.0053967

Related Stories

Predicting the distribution of creatures great and small

July 17, 2008

In studying how animals change size as they evolve, biologists have unearthed several interesting patterns. For instance, most species are small, but the largest members of a taxonomic group -- such as the great white shark, ...

Egg-laying beginning of the end for dinosaurs

April 17, 2012

Their reproductive strategy spelled the beginning of the end: The fact that dinosaurs laid eggs put them at a considerable disadvantage compared to viviparous mammals. Together with colleagues from the Zoological Society ...

Mouse to elephant? Just wait 24 million generations

January 30, 2012

Scientists have for the first time measured how fast large-scale evolution can occur in mammals, showing it takes 24 million generations for a mouse-sized animal to evolve to the size of an elephant.

Recommended for you

Live fast die young: Updating signal detection theory

October 18, 2017

Signal Detection Theory is a popular and well-established idea that has influenced behavioral science for around 50 years. Essentially, the theory holds that in a predator-prey relationship, prey animals will show more wariness ...

Tiny protein coiled coils that self-assemble into cages

October 17, 2017

(Phys.org)—A large team of researchers with members from Slovenia, the U.K, Serbia, France and Spain has developed a technique that causes proteins to self-assemble into geometric shapes on demand. In their paper published ...

The importance of asymmetry in bacteria

October 17, 2017

New research published in Nature Microbiology has highlighted a protein that functions as a membrane vacuum cleaner and which could be a potential new target for antibiotics.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Mar 19, 2013
Excerpt: "The model is "either right or it's not," he says.
Of course it's right; it's my model -- extended to whales. See for example: Nutrient-dependent / Pheromone-controlled thermodynamics and thermoregulation


Why wouldn't nutrient-dependent thermodynamically controlled intracellular signaling extend to organism-level thermoregulation associated with pheromone production in sea-faring mammals? Will we next learn about a single amino acid substitution that distinguishes whale species? Of course we will!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.