Renewable energy: Nanotubes to channel osmotic power

March 1, 2013

The salinity difference between fresh water and salt water could be a source of renewable energy. However, power yields from existing techniques are not high enough to make them viable. A solution to this problem may now have been found.

A team led by physicists at the Institut Lumière Matière in Lyon, in collaboration with the Institut Néel (CNRS), has discovered a new means of harnessing this energy: osmotic flow through nanotubes generates huge , with 1,000 times the efficiency of any previous system.

To achieve this result, the researchers developed a highly novel that enabled them, for the first time, to study osmotic fluid transport through a single nanotube.

Their findings are published in the 28 February issue of Nature.

Explore further: Harnessing the power of salt, Norway tries osmotic power

More information: Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron-nitride nanotube, Nature. 28 Feb 2013. www.nature.com/nature/journal/v494/n7438/full/nature11876.html

Related Stories

Renewable Energy Made by Mixing Salt and Fresh Water

September 2, 2009

(PhysOrg.com) -- When a river flows into the sea, the location is more than just a haven for water commerce. The mixing of fresh and salt water that occurs at an estuary also dissipates energy, as the different salinity waters ...

Boosting the amount of energy obtained from water

November 18, 2009

The energy generated in places where fresh water and salt water meet is known as blue energy. This is a relatively new but highly promising renewable energy source. Piotr Długołęcki of the University of Twente ...

Simulations help explain fast water transport in nanotubes

September 16, 2008

(PhysOrg.com) -- By discovering the physical mechanism behind the rapid transport of water in carbon nanotubes, scientists at the University of Illinois have moved a step closer to ultra-efficient, next-generation nanofluidic ...

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
2 / 5 (2) Mar 01, 2013
Thanks for the detailed synopsis, PHYSORG! Now we know precisely how and why this novel process is poised to leave all other saline-differential energy extraction technologies gasping in the dry, dirty dust of obsolescence.
FastEddy
1 / 5 (1) Mar 04, 2013
See: Nature. 28 Feb 2013. www.nature.com/na...876.html
arq
not rated yet Mar 06, 2013
Desalination and producing electricity, one of my fav topics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.