Supercomputers used to supercharge antioxidants

February 19, 2013, University of Sydney

The future of keeping ageing-related diseases at bay lies with the supercomputer according to scientists from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology at the University of Sydney.

The research, led by Professor Leo Radom from the University's School of Chemistry, and Dr Amir Karton, University of Western Australia, has used sophisticated and powerful supercomputers to design improved antioxidants which will help stave off ageing-related diseases such as heart disease, cancer, diabetes, and Alzheimer's disease.

Their work was recently published in the , and is featured in a current edition of the prestigious scientific journal, Nature Chemistry.

"While most people consume wine, berries and chocolate for an antioxidant boost, we turned on our computers! We were able to use supercomputers to improve the power of and this may provide future benefit to the health industry," said Dr Karton.

Antioxidants work by scavenging and other oxidative species, preventing them from causing damage to the body's tissues and organs. In this research the team, working alongside Professor Michael Davies and Dr David Pattison from the Heart Research Institute, studied a particular type of antioxidant found in meat, fish and eggs called carnosine, and investigated its effectiveness in scavenging the , hypochlorous acid.

Hypochlorous acid can be of benefit to the body when it is used as part of our immune system to fight off invading pathogens. However, excessive levels of hypochlorous acid in the wrong place or at the wrong time have been linked to the development of heart disease.

"The supercomputer modelling allows us to probe deeply into the molecular structure and helps us to understand just why carnosine is such an effective antioxidant. Armed with this understanding, we are then able to design even better antioxidants," said Professor Radom.

The findings of this research have led to a number of recommendations on how to improve the antioxidant capacity of particular molecules, and ultimately how to custom design for specific purposes in the fight against ageing-related diseases.

"Although we can't yet claim to have uncovered the fountain of eternal youth, our findings are one more step towards better treatments for ageing-related disease, which we hope will improve longevity and the quality of life in the future," said Dr Karton.

Explore further: Scientifically taking the guilt out of guilty pleasures

More information: www.nature.com/nchem/journal/v … full/nchem.1545.html

Related Stories

Wild strawberries may reduce cancer risk

December 3, 2007

We've all seen the term "super food" used to describe those nutrition-loaded edibles that promote health and discourage disease. Powerhouse foods high in antioxidants and phytochemicals that block the development of cancer ...

New aging cause revealed by test tube

March 22, 2011

(PhysOrg.com) -- Chemists from The Australian National University have discovered a new way that ageing-related diseases can progress, opening up new preventative and treatment possibilities for conditions such as heart disease ...

Recommended for you

The stiffest porous lightweight materials ever

December 12, 2018

Researchers at ETH have developed and manufactured a family of architectures that maximises the stiffness of porous lightweight materials. It's practically impossible to develop stiffer designs.

Researchers develop smartphone-based ovulation test

December 11, 2018

Investigators from Brigham and Women's Hospital are developing an automated, low-cost tool to predict a woman's ovulation and aid in family planning. Capitalizing on advancements in several areas, including microfluidics, ...

Field-responsive mechanical metamaterials (FRMMs)

December 11, 2018

In a recent study published in Science Advances, materials scientists Julie A. Jackson and colleagues presented a new class of materials architecture called field-responsive mechanical metamaterials (FRMM). The FRMMs exhibit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.